

 September 12, 2013 W65C816S C Compiler/Optimizer

WDCTools
W65C816S C COMPILER/OPTIMIZER

USER GUIDE

 W65C816S C Compiler/Optimizer

2

Table of Contents
CHAPTER 1 INTRODUCTION ... 3

Compiler Operation .. 4
Input File Example: ... 4
Output Files Example: ... 4

Creating an Object File .. 4
Creating an Assembly Language File .. 5

Searching for #Include Files .. 5
Compiler Options .. 6

Compiler Option Philosophy .. 6
CCOPT816 Environment Variable ... 7

C Programs in ROM .. 7
C Program Organization ... 7
System Organization .. 8
Creating A ROM Program ... 8

CHAPTER 2 WDC816CC .. 10
Running the Program .. 10
Option Summary ... 10
Option Descriptions ... 11

CHAPTER 3 Technical Notes ... 21
Path Size Limitation ... 21
Function Calls and Argument Passing ... 21

Function Arguments .. 21
Stack Frame and Local Variables ... 22

Startup Code .. 22
Memory Models ... 22

Small Memory Model .. 22
Compact Memory Model ... 23
Medium Memory Model ... 23
Large Memory Model ... 23
Identifier Name Prefixes .. 23

Memory Management ... 23
Caveats .. 27

Floating Point Considerations ... 28
Pragmas .. 29

Section Pragma ... 29
Consts and Strings ... 29
Input/Output Port Addressing ... 30
In-Line Assembly Code ... 32
ASM Keyword .. 33
Producing Optimum Code .. 33
Optimizer ... 33
Floating Point ... 33
Interrupt Routines ... 33
Prototyping Functions ... 34
Variable Name Length ... 34
Debugging .. 34
Assembling Compiler Output Considerations .. 35
Volatile Qualifiers .. 35
Negative Array Indexes ... 35
Global Variable and Function Declarations ... 35

CHAPTER 4 Libraries ... 35

 W65C816S C Compiler/Optimizer

3

Library Names (WDC_SDS\LIBSRC) .. 35
ANSI Functions.. 36
Heap Functions ... 37
Making ‘C’ Callable Assembly Language Functions ... 37

APPENDIX A WDC Supported C Functions .. 39
APPENDIX B Description of Compiler Error Messages 45
APPENDIX C Limits for Mathematical Variables .. 73
APPENDIX D File Include Definitions ... 74
INDEX .. 75

 CHAPTER 1 INTRODUCTION

The WDCTools suite provides the tools needed to do effective C and assembly language development for the
W65C816S microprocessor. The compiler is built on top of the WDC W65CXX assembly language development

 W65C816S C Compiler/Optimizer

4

system which is included in this package. The assembly language development system consists of a full macro
assembler, an object file linker and an object file librarian.

Compiler Operation

The WDC C compiler is a full ANSI standard implementation & math IEEE-754 1985. The compiler is fully
validated using the Plum Hall Validation Suite against the ISO/IEC 9899:1999(E). The compiler and library
functions are only validated against those listed in the ANSI C standard, except for those listed in the “compiler
testing” document that is sent with each release. All other library functions are provided “as is.” There are also a
number of useful extensions to the ANSI standard, which are controlled by compiler switches. The compiler
supports four memory models, the small, compact, medium and large models. The compiler reads the input file
function by function and produces a parse tree for the entire function using the preprocessor to expand macros.
A few optimizations are performed on the tree before generating code. The code generator then reads the parse
tree and generates a list of assembly language instructions that are written to a temporary file. If the optimizer
has been invoked, it reads the assembly language file, improves the code where possible and writes it back out.
The assembler is then executed to convert the assembly language instructions into object format. The assembler
deletes the temporary file after finishing.

Input File Example:

The input file is a text file which contains the C source code. The file can be specified using a full path such as:

 WDC816CC C:\SRC\HELLO.C

or by the file name alone if the file is located in the current directory such as:

 WDC816CC HELLO.C

If the command that starts the compiler does not specify the extension of the file containing the C source, the
compiler assumes that the extension is `.C'. For example, the command

 WDC816CC PROG

compiles a file named PROG.C in the current directory. Although `.C' is the recommended file extension name, it
is not mandatory. The specification

 WDC816CC PROG.PRG

reads the file PROG.PRG from the current directory as the input to the compiler.

Input files can be created with the text editor of your choice, but the file must be straight text and can not contain
any formatting commands such as those produced by a word processor.

Output Files Example:

Creating an Object File

Normally, when you compile a C program you are interested in the relocatable object code for the program, and
not in its assembly language source. Because of this, the compiler by default writes the assembly language
source for a C program to an intermediate file and then automatically starts the assembler. The assembler then

 W65C816S C Compiler/Optimizer

5

translates the assembly language source to relocatable object code, writes this code to a file, and erases the
intermediate file. By default, the object code generated by a compiler-started assembler is sent to a file whose
name is derived from that of the file containing the C source by changing its extension to .OBJ. This file is placed
in the directory that contains the C source file.
For example, if you started the compiler with the command:

WDC816CC PROG.C

the file PROG.OBJ is created, containing the relocatable object file for the program. You may explicitly specify
the name of the object file using the compiler option -O. For example, the command

WDC816CC -O MYOBJ.REL PROG.C

compiles and assembles the C source that is in the file PROG.C, writing the object code to the file MYOBJ.REL.
When the compiler is going to start the assembler automatically, by default it writes the assembly language
source to the file CTMPXXX.XXX, where `XXX' are numbers chosen such that the file name is unique. The file is
placed in the directory defined by the CCTEMP environment variable. If CCTEMP is not defined, the file is placed
in the current directory. The CCTEMP environment variable can be used to pass the intermediate assembly
language file to the assembler through a RAM disk.

Creating an Assembly Language File

In some programs, you may not want the compiler to start the assembler automatically. For example, you may
want to modify the assembly language generated by the compiler for a particular program. In such cases, use
compiler option -A, which prevents the compiler from starting the assembler. When you specify option -A, by
default the compiler sends the assembly language source to a file whose name is derived from that of the C
source file, by changing the extension to .ASM. This file is placed in the same directory as the one that contains
the C source file. For example, the command

WDC816CC -A PROG.C

compiles, without assembling, the C source that is in PROG.C, sending the assembly language source to
PROG.ASM.

To let the compiler generate assembly language source code with embedded ‘C’ code and continue until an
object file is produced, use the –LT option. For example:

WDC816CC –LT prog.c

 When using option -A, option –O specifies the name of the file to which the assembly language source is sent.
For example, the command

WDC816CC -A -O RAM:TEMP.ASM PROG.C

compiles, without assembling, the C source in PROG.C, sending the assembly language source to the file
TEMP.ASM on the volume named RAM:. When option -AT is used, it causes the compiler to include the C
source statements as comments in the assembly language source.

Searching for #Include Files

By default, the WDC C compiler searches the current directory to locate files specified in #include statements. It
can also search a user-specified sequence of directories for such files, thus allowing program source files and
header files to be contained in different directories. Compiler option –I and the environment variable
WDC_INC_65816 define the directories in which the compiler searches for #include files. The compiler
automatically searches the current directory for a #include file if the following conditions are met:

 W65C816S C Compiler/Optimizer

6

1) the compiler is started without specifying option -I,
2) there is not a WDC_INC_65816 environment variable, and
3) the #include statement does not specify the drive and/or

directory containing the file.

If a #include statement specifies either the drive or directory, only that location is searched for the file.

#include Search Order

When the compiler encounters a #include statement, it searches directories for the file specified in the statement
in the following order:

• if the filename is delimited by double quotes, ``filename'', the current directory is searched.
• if the filename is delimited by angle brackets, <filename>, the current directory is searched only if no -I

options are specified and if the WDC_INC_65816 environment variable does not exist.
• directories specified in option -I are searched, in the order listed on the line that started the compiler.
• directories specified in the WDC_INC_65816 environment variable are searched, in the order listed.

Compiler Options

Compiler Option Philosophy

Most of the compiler options are set up as toggles, which means that they can be either on or off. Most options
default to off. The defaults can be changed by creating an environment variable, CCOPT816. Options specified
directly to the compile command will override options specified in the CCOPT816 environment variable. With a
few exceptions, options are grouped around a common function. The first letter of an option identifies the group.
The group letters are:

A Assembly language output control
B Debugging control
M Memory model control
P Parser control
Q Output control
S Optimization control
W Warning control

After the group letter, one or more individual options may be specified. If an individual option letter occurs and is
not preceded by a 0(zero), the associated option is turned on. Multiple individual options can be specified. To
turn an option off, the character 0(zero) must appear after the group letter and before the options to be turned off.
-P0T, for instance, turns off trigraphs and -PT or -P1T turns them on.

 W65C816S C Compiler/Optimizer

7

Combinations of options can be used to produce very specific results. To enable full ANSI syntax checking with
the singular exception of trigraphs, for example, you would use the option -PA0T. The A option of the P group
specifies full ANSI which includes trigraphs. The 0T option turns trigraphs off. Since options are scanned left to
right the combination -PA0T produces the desired result. -P0T1A would not produce the intended result. Since
the 1A option is scanned after the 0T option, the 0T option is cancelled.

CCOPT816 Environment Variable

You can override the default settings of the compiler by using the environment variable, CCOPT816. If you want
to disable C++ style // comments as the default, for example, you could place the following line in your
AUTOEXEC.BAT file:

SET CCOPT816=-P0X

which would prevent the compiler from considering characters following a // as a comment till the end of the line.

The CCOPT816 specification should have no blanks on either side of the equal sign. Options passed directly to
the compiler override the CCOPT816 environment variable. If the CCOPT816 environment variable was set to -
P0X and you specified -PX as a direct option to the compiler, then the CCOPT816 -P0X option would be
reversed. If you wish to specify more than one option with the CCOPT816 environment variable, then each
option group must be separated by a blank. For example,

SET CCOPT816=-P0X -MT -WO

would set the -P0X, -MT and -WO options. (Turn off C++ style comments, force string reference to be set to far,
turn pointer/int conflicts into warnings. See page 15 for option summary) Note that CCOPT816 must be specified
in upper case.

C Programs in ROM

This section discusses the general procedure of placing C code in ROM. It describes some of the choices that
are available and the steps required to create the final output.

C Program Organization

After compilation and linking, a C program consists of three sections: code, initialized data, and uninitialized data.
The difference between initialized and uninitialized data is demonstrated by the following two C statements:

int x = 1;
int y;

In the first statement, the global variable x has memory space allocated for it which is initialized to contain the
value 1. The second statement allocates memory space for the variable y, and by C convention, is initialized to
zero by default. The second variable, y, is considered uninitialized data since it is never explicitly set to a
particular value. In a C program, all uninitialized data is collected together for efficiency. Otherwise, there might
be a lot of zeros spread throughout the data segment. This is especially important in a ROM-based system
where instead of copying zeros from ROM to RAM, it is much more efficient just to clear the uninitialized area of
RAM to zero.

 W65C816S C Compiler/Optimizer

8

System Organization

To operate correctly, a system must contain as much ROM and RAM as are needed to get the job done. The
ROM is located at whatever address is convenient. Usually the ROM is located at the high end of bank zero so
that the interrupt and reset vectors have defined values when the system is powered up. Program code may also
be placed in other banks of memory and be accessed by a small amount of ROM in bank zero. Some amount of
RAM in bank zero is also required for the stack and direct page access. Additional RAM outside of bank zero
may also be provided if more is needed than is available in bank zero. The main program code is stored in the
ROM which is where it is usually executed from since the code itself does not change. Initialized data is also
stored in ROM so that it is available when the system is powered up. However, initialized data often represents
the initial state of variables that may be changed by the program. Since variables in ROM can't change, the
variables must be in RAM. When the system is reset, the initial values in ROM are copied to the RAM locations.
Thus, initialized data has two locations, the RAM address where the program code will access it and a ROM
address where it is copied from. The WDC C development system is set up so that the initialized data can be
stored in ROM immediately following the program code. This allows the startup code to know where to find the
initialized data so it can be copied to RAM.

Creating A ROM Program

To keep things simple, we will assume that we are creating a program that contains a small amount of code, but a
fairly large amount of data. Thus, we will use the Compact memory model and we compile all files with the -MC
option.

WDC816CC -MC MYPROG.C

Included in the WDC_SDS\LIBSRC\S65C816 directory are several example startup assembly language source
files. Copy the one called C0C.ASM into the current directory. This file contains the reset and interrupt vectors
and a short sequence of code that sets up the stack pointer and the data bank register, copies the initialized data
to RAM, clears out the uninitialized data and then transfers control to main(). The default is for the program stack
to start at 0xF000 and we'll leave it there. Assemble the startup file by using the command:

WDC816AS C0C.ASM

Now, we need to create the output file. For this example, let's say that we want the code to be located in ROM at
the beginning of bank one and that the data will be located in RAM starting at location 0x8000 in bank two. The
initial values of the data will actually reside in the ROM in bank one immediately following the program code.
To link the modules together, we would use the command:

WDCLN -HM28 -C10000 -D28000, MYPROG.OBJ C0C.OBJ -LCC

The first option to the linker specifies that the output will use Motorola S-28 records which have a 24 bit address
field. (A full description of the linker and its options can be found in the Assembly Language Development
System manual.) Next, the address of the code is specified to be at location 0x10000 which is the beginning of
bank one. The -D option tells the linker to locate the address of the data at 0x28000, but to place the actual
output immediately following the code. The address options seem complicated but are not really too difficult. In
general, if no addressing option is given, then one section is placed immediately following the preceding section.
The first section is the code, followed by initialized data, and finally uninitialized data. Each address option
consists of an address where the code or data is eventually expected to be located. For code, this is the address
where subroutine calls will be made to and is usually in ROM. For data, this is the address where program code
will load and store into and is usually in RAM. Following the `use' address is an optional comma and a physical
location address. The physical location address is the address that will be placed in the hex records generated
by the linker. For program code, the physical and use addresses are almost always the same. Thus, to locate
code at location 0x10000, the option:

 W65C816S C Compiler/Optimizer

9

-C10000,10000

would be correct. However, the linker assumes that if no comma and second argument are present, then the
physical and use addresses are the same. Thus, the preceding option could also be given as:

-C10000

For initialized data, the use address is typically in RAM, while the initial physical location is in ROM. One way to
handle this is to specify the exact address in RAM and in ROM as in:

-D28000,10800

which would place the data at location 0x10800 in ROM although the program code would be looking for it at
location 0x28000. One of the problems with this approach is that we would have to know that the size of the
program was less than 0x800 bytes or the data would overwrite the program code. An easier method would be to
use the option:

-D28000,

which tells the linker to locate the data for use at location 0x28000, and by using a comma without an address, to
place it physically right after the preceding section which would be the program code. The assembly language
startup routine in C0C.ASM assumes that the initialize data is located immediately following the code section and
copies it to it's `use' location in RAM. Further discussion of sections and linking as well as a full analysis of a
startup routine can be found in the Assembly Language Development System manual.

 W65C816S C Compiler/Optimizer

10

CHAPTER 2 WDC816CC

The WDC C compiler is a full ANSI standard implementation. There are also a number of useful extensions to
the ANSI standard which are controlled by compiler switches.

Running the Program

The format of the WDC C compiler command is:

WDC816CC [OPTIONS] SRCFILE

where SRCFILE is the name of the C source file, and the brackets around options indicate that they are not
required. The compiler only deals with a single file at a time and must be restarted to compile any additional files.

Option Summary

-A Causes the compiler not to start the assembler after it has compiled a program. Only an assembly file
is created.

-AT Same as -A, but also imbeds C source statements into the assembly code.
-BS Generate source level debugging information.
-D Defines a symbol for the preprocessor.
-HI Read pre-compiled header file into symbol table.
-HO Create a pre-compiled header file.
-I Specifies path for include files.
-L Creates a listing from the compiler output to be passed to the assembler output.
-LT Generates listing with embedded source statements.
-LW Modifies the –L option to set the listing to a wide format of 132 columns.
-MC Generates code for the Compact model.
-MD Generates a special interrupt frame. For Micronas use only.
-MH Generates calls to ~hwmul instead of ~mul for hardware multiply. For Micronas use only.
-MI Generates the special Micronas interrupt function code
-MK Force references to const data to be far.
-ML Generates code for the Large model.
-MM Generates code for the Medium model.
-MO Generate module headers for library functions.
-MS Generates code for the Small model.
-MT Force references to string data to be far.
-MU Place initialized const data in the compiler CONST section.
-MV Place string data in the compiler STRING section.
-O Specifies name to be used for output files.
-PA Turns on ANSI preprocessor and trigraphs. Turns off non-ANSI options.
-PB Make bitfields unsigned by default.
-PC Allows extra characters after #endif or #else.
-PE Causes enums to occupy only the amount of space needed and has been set to unsigned for

performance.
-PP Make characters default to signed.
-PT Looks for trigraphs in the input stream.
-PX Allows C++ style comments.
-QA Causes generated prototypes to use __PARMS(()) syntax.
-QP Generates prototypes for all non-static functions.
-QQ Disables startup and error messages from being displayed.
-QS Generates prototypes for all static functions.
-QV Generates verbose information on memory usage.
-SF Generates an optimized for(;;) loop.

 W65C816S C Compiler/Optimizer

11

-SI Optimize pointer and array indexing by assuming only positive indices.
-SM Defines the __C_MACROS__ macro.
-SO A shorthand way of specifying –SF, -SI, -SM and -SS.
-SOP A combination of -SO, -SP.
-SP Invoke the post-pass peephole optimizer, WDC816OP.
-SS Generate better array indexing with far pointers.
-WA Complains on arguments which do not match the prototype specification.
-WD Generates warnings for non-prototype style function definitions.
-WE Quit on warnings. Treats warnings as errors.
-WL Shorthand for -WARU and stands for lint.
-WN Do not generate warnings on direct pointer to pointer conversions.
-WO Causes pointer/int conflicts to generate warnings rather than errors.
-WP Generates a warning if a function is called without a prototype being defined for the function.
-WQ Print warnings and errors to the file WDC816.ERR.
-WR Warns if function return type does not match declared type.
-WS Ignores all warnings.
-WU Warns about unused local variables.
-WW Allows compiler to continue beyond 5 errors.

Option Descriptions

-A

Normally, the compiler generates assembly language to a temporary file that is assembled by the assembler and
then deleted. This option tells the compiler to only generate an assembly language file. The default name of the
created assembly language file is formed by taking the root part of the source file name and appending .ASM.
The -O option can be used to exactly specify the name of the assembly language output file.

For example:

WDC816CC -A MYFILE.C
WDC816CC -A -O SAVE.ASM MYFILE.C

The first command compiles the file MYFILE.C and places the assembly language output into a file called
MYFILE.ASM. The second example compiles the same source file, but places the output into the file SAVE.ASM.

-AT

This option is identical to the -A option except that the compiler copies the C source statements to the assembly
language output file as comments.

For example:

WDC816CC -AT MYFILE.C

This command compiles the file MYFILE.C and places the assembly language output into a file called
MYFILE.ASM with the C statements embedded as comments.

WARNING: The option –AT can hide error messages and causes problems for the optimizer
-BS

This option tells the compiler to add source level debugging information to the statements it generates in the
output assembly language file.

WARNING: Do not use the –MO option with –BS. This will cause a conflict.

 For example:

WDC816CC -AT -BS MYFILE.C

 W65C816S C Compiler/Optimizer

12

This command compiles the file MYFILE.C and places the assembly language output into a file called
MYFILE.ASM. This file has the C statements embedded as comments and additional statements that specify line
number and source level debugging information.

-D

This option defines a symbol in the same way as the preprocessor directive, #define. Its usage is as follows:

-DMACRO[=TEXT]

For example,

-D MAXLEN=1000

is equivalent to inserting the following line at the beginning of the program:

#define MAXLEN 1000

The separating space following the -D is optional. The following formats are equivalent:

-D MAXLEN=1000
-DMAXLEN=1000

Since option -D causes a symbol to be defined for the preprocessor, it can be used in conjunction with the
preprocessor directive, #ifdef, to selectively include code in a compilation. A common example is code such as
the following:

#ifdef DEBUG
printf("value: %d\n", i);

#endif

This debugging code would be included in the compiled source by the following command:

WDC816CC -DDEBUG PROGRAM.C

When no substitution text is specified, the symbol is defined as the numerical value one.

-HI

This option specifies the name of an input file containing pre-compiled header file information. The input file is
created using the -HO option. For example:

-HI MYPROG.DMP

 W65C816S C Compiler/Optimizer

13

-HO

This option specifies the name of an output file for pre-compiled header information. This information is later
used with the -HI option to compile programs that use the same header files over and over again. The use of pre-
compiled header files can significantly shorten compile times. Only one pre-compiled header file may be used
per compilation, but it may contain information from numerous header files. For example, if the C source files for
a program included the header files STDIO.H, STDLIB.H and STRING.H, you could speed up compilations by
pre-compiling these files. To do that, create a dummy file named X.C that contained the following lines:

#include <stdio.h>
#include <stdlib.h>
#include <string.h>

Create the pre-compiled header file X.DMP using the following command line:

WDC816CC -HO X.DMP X.C

Then, when compiling a source file that includes these header files you can use a command like:

WDC816CC -HI X.DMP MYPROG.C

When the compiler encounters a #include that references one of the files in the pre-compiled header file, it just
skips it.

-I

Compiler option -I defines a single directory to be searched for the file that was specified in a #include statement.
The path descriptor follows option -I. A space between -I and the path descriptor is allowed but not required.
 The command

WDC816CC -I C:\OTHER\INCLUDE

directs the compiler to search the c: + + other + + include area when looking for an include file.
Multiple -I options can be specified when starting the compiler, if desired, thus defining multiple directories to be
searched.
You can also specify where include files are kept using the WDC_INC_65816 environment variable.

-L

This option creates a listing from the compiler output to be passed to the assembler output. The ‘C’ source code
statements are added as comments to the assembly code listing.

-LT

This option is used to generate a listing that contains embedded source statements.

-LW

This option modifies the –L option to set the listing to a wide format of 132 columns. This option is the same as
the PW 132 option in the assembler.

 W65C816S C Compiler/Optimizer

14

-MC

This option generates code for the COMPACT memory model which uses 16 bit pointers for code and 32 bit
pointers for data. This restricts all code to one bank, stack in zero bank, global data in one bank and unlimited
data allocations. See CHAPTER 3 for more information on memory models.

-MD

This option generates a special interrupt frame and can be used only with the –MI option. This option is for
Micronas use only. Please refer to the Micronas CDC16xxF documentation for more information.

-MH

This option generates call to ~hwmul instead of ~mul for hardware multiply. This option is for Micronas’ use only.
Please refer to the Micronas CDC16xxF documentation for more information.

-MI

This option generates the special Micronas interrupt function code when returning from the reserved word
“INTERRUPT” type function. Please refer to the Micronas CDC16xxF documentation for more information.

-MK

This option forces all references to const data to be far references. By default, const data references are near
references. However, if const data is forced into a single section such as the KDATA section, it may be necessary
to force references to that section to be far references. See the discussion of it CONSTS AND STRINGS in
CHAPTER 3 for more details and an example.

-ML

This option generates code for the LARGE memory model which uses 32 bit pointers and allows unlimited code,
unlimited data allocations, and up to 64k of global data. See CHAPTER 3 for more information on memory
models.

-MM

This option generates code for the MEDIUM memory model which uses 16 bit pointers for data and 32 bit
pointers for code. This restricts all data to zero bank. See CHAPTER 3 for more information on memory models.

-MO

This option causes the compiler to generate a module header and ending for each function and global variable in
the source file. This allows each function to be loaded separately from a library of functions. This option is
usually only used when compiling source files for inclusion in a library. (Must also specify the model used. i.e. –
MOS, MOM, MOC, or MOL)

WARNING: Do not use the –BS option with –MO. This will cause a conflict.

-MS

This option generates code for the SMALL memory model which uses 16 bit pointers for code and data. This
restricts all data to zero bank and only one 64K bank of code may be used. See CHAPTER 3 for more
information on memory models.

 W65C816S C Compiler/Optimizer

15

-MT

This option forces all references to string data to be far references. By default, string references are near
references. However, if strings are forced into a single section such as the KDATA section, it may be necessary
to force references to that section to be far references. See the discussion of CONSTS AND STRINGS in
CHAPTER 3 for more details and an example.

-MU

This option forces initialized data declared using the const keyword to be placed in the compiler's CONST section
which defaults to KDATA. See the discussion of CONSTS AND STRINGS in CHAPTER 3 for more details and
an example.

-MV

This option forces string data to be placed in the compiler's STRING section which defaults to KDATA. See the
discussion of CONSTS AND STRINGS in CHAPTER 3 for more details and an example.

-O

This option is used to override the default output filename. The separating space between the option –O and the
filename is optional. A detailed discussion of compiler output files appears in Chapter 1.

-PA

This switch is used to turn on all the ANSI checking and turn off any special extensions. A program which
compiles with the -PA flag should compile with any other ANSI standard C compiler.

-PB

This option causes bit fields to be treated as unsigned. The default is signed.
For example,

int pFlags : 3;

by default defines a bit field whose value ranges from -4 to +3. If the -PB option is specified, the range is from 0
to 7.

-PC

This option allows extra characters to occur on the line following the pre-processor directives #else and #endif.
This option is provided for compatibility with pre-ANSI compilers.

-PE

By default the size of enums is the same as that of an int. Currently, with the –PE option, enum can only be
unsigned short/char values intended for compiler code generation performance. This option places them in the
smallest space that will contain them. For example, the definition:

enum colors { blue, red, yellow, white};

would use a single byte to represent enums of this type if the -PE option was used. The definition:

enum countries { USA, England, France=500, Germany};
would use a two byte word to represent enums of this type when using the -PE option.

 W65C816S C Compiler/Optimizer

16

-PP

The 65816 does not have an instruction which will sign extend an eight bit quantity to a sixteen bit one. Thus,
unsigned character operations are much more efficient than signed character operations. The WDC C compiler
chooses to treat char directives as specifying unsigned char quantities. The signed char directive may be used to
declare characters that can be positive or negative. The -PP option changes the default char declaration to be
signed char.

-PT

Trigraphs are an attempt by the ANSI committee to support foreign keyboards and printers. Certain characters
are represented as two question marks followed by another character which indicates the true character intended.
For example, ??= is equivalent to # and ??(is equivalent to [. In most instances, this simply slows down the
parser, but it must be supported for ANSI compliance. The option -PA turns on trigraph checking, but this option
is included to turn off trigraphs while retaining the rest of the ANSI compliance.

-PX

This option allows C++ style single line comments. When this option has been turned on, when the compiler pre-
processor sees `//', it treats the two slash characters and the rest of the line as a comment.

-QA

This option controls how prototypes are generated by the -QP and -QS options. If -QA is specified, then a typical
prototype is generated as:

int func _PARMS((int x, int y));

instead of the default:

int func(int x, int y);

The first form is used for maximum portability to pre-ANSI compilers. The following sequence is usually placed at
the beginning of the header file containing the portable style prototypes:

#if __STDC__
#define _PARMS(x) x
#else
#define _PARMS(x) ()
#endif

Then, if __STDC__ is defined, the macro will change the first prototype to:

int func (int x, int y);

Otherwise, if it not defined, the prototype becomes:

int func ();

which is the standard declaration of an external function defining the type returned by the function.

 W65C816S C Compiler/Optimizer

17

-QP

This option tells the compiler to generate a file with the extension .PRO that contains prototypes for all the non-
static functions found in the current source file. The file is not compiled.

-QQ

This option prevents the compiler from displaying the startup message and the number of errors.

-QS

This option is similar to the -QP option except that it causes the compiler to generate prototypes for static
functions.

-QV

This option causes the compiler to display information on memory usage.

-SF

This option causes the compiler to generate more efficient for loops. This is an option since the less efficient
loops are easier for source level debugging.

 -SI

The W65C816 programming model includes two index registers. Efficient use of these registers can produce
smaller and faster programs. However, one limitation of the index registers is that they can only contain unsigned
offset values.
Thus, when compiling the C expression:

x[i]

the index registers cannot be loaded with the value of i since it is possible that i might contain a negative value.
Instead, the value of i must be added to x to produce the desired address.
When the -SI option is used, the compiler assumes that all index values are non-negative and will generate the
smaller, faster form of addressing. When using far pointer, you must use a positive index value.
Note that negative constants will still be handled correctly.

-SM

This option defines the macro __C_MACROS__. Some header files use this macro to redefine functions as
macros that removes the function call overhead in favor of in-line code. See Wdc_Sds\Include\ctype.h and
Wdc_Sds\Include\stdio.h.

-SO

This option is the general purpose optimization option that is the same as specifying –SF, -SI, -SM and -SS.
(Efficient “FOR” loops, positive indexing only, macros, arrays <64K) Using this option automatically uses positive
short indexing. Incrementing a pointer by one will assume that only the lower 16 bits are affected. To use far
pointers, use –SO0S to disable short indexing.

-SOP

This option tells the compiler to use –SO and –SP. (Calls the post-pass peephole optimizer and all optimizations)

-SP

 W65C816S C Compiler/Optimizer

18

This options causes the post-pass peephole optimizer, WDC816OP, to be invoked on the assembly language
output of the compiler. If the -A option has not been specified, then WDC816OP will invoke the assembler,
WDC816AS on it's output.

-SS

This option tells the compiler to assume that arrays are less than 64K in size and generates more efficient code
based on this assumption. When using this option with far pointers, the compiler will only index the 64K array and
will not generate the extra code needed to increment beyond this 16-bit memory space.

NOTE: This option is automatically turned on when the -SO option is used. To use -SO without -SS, use -
SO0S.

 -WA

Normally, if you call a function in the presence of a prototype, and the type of a function parameter does not
match the type specified in the prototype, the type is coerced as if by assignment. Thus if you pass an int to a
function expecting a long, the int is quietly cast to a long. This option causes the compiler to generate a warning
if a quiet cast is generated. This is useful, since it allows you to change the code to an explicit cast which is
portable to pre-ANSI compilers.

 -WD

This option generates a warning if a function is defined using the old pre-ANSI style definition of the form:

int function(a,b)
int a, b;
{ }

instead of:

int function(int a, int b)
{ }

This is a useful tool for ``ANSI-izing'' your programs.

-WE

Normally warnings and errors generated by the program are displayed on the screen of the computer. If errors
occur, the compiler stops without producing an object file. If only warnings occur, an object file is produced. This
option converts all warnings into errors.

-WL (Currently not available)

This option is a short-hand way of specifying the -WA, -WR and -WU options. It is used to force the compiler to
do maximum type checking.

-WN

This option suppresses warning messages for direct pointer to pointer conversions which do not contain an
explicit cast, such as the following code fragment:

int *iptr;
char *cptr;

cptr = iptr;

 W65C816S C Compiler/Optimizer

19

Because the ANSI standard defines that such direct conversions are illegal, the -PA (full ANSI) option will always
generate an error for the above code. To eliminate the error when -PA is specified, the above could be changed
to:

cptr = (char *)iptr;

-WO

Under ANSI C, pointer-integer conversions are illegal, and are usually a problem when 16 bit ints are used. This
option changes pointer-integer conversion errors into warnings, and has been included for compatibility with non-
ANSI compliant compilers.

-WP

This is useful for determining if a header file is not being included. For example, if you use the strlen() function
without including the file string.h, then -WP will generate a warning.

-WQ

By default the compiler displays error messages on the screen. This option sends them in an abbreviated form to
the file WDC816.ERR in the following format:

File>line:col:type:errnum:errstr:sym

file – name of file, line – line number, col – column error occurred, type – E for error or W for warning,
errnum – the actual error number, errstr – the description of the error, sym – an optional name of the symbol or
function in the error.
For example: j.c>14:5:E:157:incompatible function declarations:u08

-WR

Normally, a function is declared without a type, which implies that it returns an int. However, if there are any
return statements, explicit or implicit, that do not return a value or that return a value whose type disagrees with
the type of the function, then a warning is generated for the return statements. Thus, the function:

foo()
{ printf("hello world\n"); }

would generate a warning since it should have been defined:

void foo ()

since there is no value returned. The warning would be on the } which is an implicit return statement.

 W65C816S C Compiler/Optimizer

20

-WS

This option causes all warning messages to be suppressed.

-WU

Since the compiler has the entire tree of the function in memory, it can detect that a variable has been declared
but has not been used. This option directs the compiler to check for such variables and generate a warning for
each that is not used.
For example, the function:

void foo()
{

int j;

printf("hello world!\n");
}

would generate a warning that j is not used in the function.

-WW

Normally, the compiler will pause after encountering five errors and ask if compilation should continue. This
option indicates that the compiler should not pause and should continue to the end of compilation.

 W65C816S C Compiler/Optimizer

21

CHAPTER 3 Technical Notes

This section contains information about the implementation of the compiler for the W65C816 processor.

Path Size Limitation

The maximum allowable length of the path that follows the command WDC816CC is 256 characters.

Function Calls and Argument Passing

When a function is called with arguments, there are two different methods that can be used to restore the stack to
its original condition. The more traditional C method is to have the calling function pop the arguments after the
function call returns. A more efficient method is to have the function that is called pop the arguments before
returning. This method is more efficient since the code to pop arguments occurs once, instead of each place that
the function is called. There are two drawbacks to this approach. First, if a variable number of arguments are
passed (printf() for example), there is no way for the called function to know how many arguments to pop since it
may vary from call to call. Second, if the wrong number of arguments is passed, the stack pointer becomes
inconsistent which almost always results in a program error. Both of these problems are completely avoided by
the use of function prototypes. If a function prototype declares a function to have a variable number of
arguments, the compiler automatically pushes an extra word on the stack which is the number of bytes of
arguments to pop off the stack. The function itself must be declared with a variable number of arguments so that
it knows to use extra word when popping arguments. The use of prototypes also avoids the second problem by
always guaranteeing that the correct number and types of parameters are passed.

Function Arguments

When calling a function the arguments are pushed onto the stack in reverse order, starting with the last argument.
The last argument pushed is the first one listed in the function call. For example, when calling a function with two
int arguments, the following shows the C version of the function call and the assembly language generated(Small
memory model is assumed):

; func(a, b);

LDA b
PHA
LDA a
PHA
JSR __func

If there are a variable number of arguments, after the last argument is pushed, the total number of argument
bytes plus two is pushed onto the stack. For example:

; func(a, b);

LDA b
PHA
LDA a
PHA
PEA #6
JSR __func

Function Return Value

Functions called by a C function and C functions themselves return values in the X register and the Accumulator.
The high word of the result, if any, is in the X register, while the low word is in the Accumulator.

 W65C816S C Compiler/Optimizer

22

Stack Frame and Local Variables

When a C function is entered, space is allocated on the stack for as many local variables as have been declared
in the function along with as many temporary variables as are needed. The direct page register is saved on the
stack and then is modified to point at the beginning of the temporary and local variables. All references to
arguments and local variables are made via the direct page addressing mode.

Note: As a result, the total size of the arguments, return address, local variables and temporary variables may not
exceed 256 bytes. This is partly done for speed. NOTE: If you require more variables in a function, you must put
them is a global area.

Startup Code

In the WDC_SDS\LIBSRC\S65C816 directory, there are example assembly language startup files called
C0S.ASM, C0C.ASM, C0M.ASM and C0L.ASM. These files are designed to be customized for the particular
program being designed. They contain a set of interrupt and reset vectors, initialization code that disables
emulation mode, sets the Data Bank Register, sets the stack pointer, copies any initialized data from ROM to
RAM, clears any un-initialized data to zero and calls the main() routine. A detailed description of a similar routine
called STARTUP.ASM can be found in the Assembly Language Development Manual.

WARNING: The function main() has different prefix characters for each main() function so there is no confusion
when compiling for different models.

Memory Models

There are four memory models currently supported. There are really two choices to be made, size of code and
size of data. The 65816 architecture provides an efficient mechanism for dealing with a 64K chunk of code or
data. If either code or data is no bigger than 64K, then 16 bit pointers may be used. This can have a big impact
on program size and execution speed, since 16 bit pointers require less than half the number of operations that
32 bit pointers require to add, subtract and manipulate them. The memory model choices are summarized in the
following table.

 <64K Code >64K Code
<64K Data Small Medium
64K Data Compact Large

Small Memory Model

The Small memory model uses 16 bit pointers for both code and data references. This provides the smallest and
fastest programs possible. When this model is used, there can be up to 64K of combined stack and data space
and an additional 64K of code space. The only restriction on this model is that all global and allocated data
must reside in the zero bank.
Note: the main() function is called _ _main.

 W65C816S C Compiler/Optimizer

23

Compact Memory Model

The Compact memory model uses 16 bit pointers for code and 32 bit pointers for data. It is useful when your
code size is less than 64K, and there is a lot of initialized and/or allocated data. All code must reside within a
single bank of memory. Note: the main() function is called _~main.

Medium Memory Model

The Medium memory model is for large programs with a limited amount of data. Code can be larger than 64K,
while the size of data plus stack plus heap must all fit in bank zero. Note: the main() function is called ~_main.

Large Memory Model

The Large memory model uses 32 bit pointers for both code and data. This provides the most flexibility regarding
program size and location while sacrificing some speed and size. When this model is used, there can be up to
64K of stack space in the zero bank, up to 64K of global data in a single bank (although memory allocations can
be of any size), and as much code as is desired. Note: the main() function is called ~~main.

Identifier Name Prefixes

The compiler automatically generates a prefix for all global symbols. This prefix differs for each of the different
memory models. The following table lists the identifier prefixes for each of the memory models.

Small _ _
Medium ~ _
Compact _ ~
Large ~ ~

The first prefix character reflects the code size model. It will also be affected by any near or far qualifiers
associated with the function.

Memory Management

The 65816 memory is organized as a number of 64K banks. One bank is set as the program bank and one bank
is set as the data bank. If a program only has 64K or less each of code and data, then there is no need to read
the following discussion. On the other hand, if a program has large amounts of code and/or data, then the
program must be broken into sections.
The problem with breaking a program and its data into sections is that there needs to be a way to indicate which
functions and data are placed in which section. Currently, the compiler generates three sections, CODE, DATA,
and UDATA, for program code, initialized data and un-initialized data. An additional section, KDATA, is
generated for constant data and/or string data if the appropriate option is specified. Using #pragmas or compiler
options, these can be changed to any section name desired. Then the location of the section in memory can be
specified at link time or within the pragma or option itself. This provides total control over the location of each
function and data item in memory. Examples will be provided in a later section. One also needs to be able to
allow functions in different banks to call one another and for functions to reference data not in the current data
bank. This is accomplished by using an extension to ANSI standard C. This extension is in the form of two new
keywords, near and far. These keywords act as storage class modifiers within declarations. When near is
applied to a function, then all references to the function are made using a 16-bit call and must be from the same
bank. When far is applied, then all calls are 24-bit and can be made from any bank. When near is applied to
data, then the data must be in the current data bank since a 16-bit reference is made to the data. When far is
applied, then all references are 24-bits and the data can reside anywhere in memory. The compiler's four
memory models that are controlled by the -mX switches can be explained in terms of the near and far keywords.
In small model, all functions and data default to near. In medium model, all functions default to far, while data

 W65C816S C Compiler/Optimizer

24

defaults to near. The large data models are a bit more complicated. By default, all pointers are considered far
and can point anywhere in memory. However, all defined data is considered to be near. This means that all
references directly to data are made using a 16-bit reference, but all addresses are 24-bits. This is for efficiency
since few programs require more than 64K of initialized data.

In any model, the nature of a particular function or data item can be explicitly specified using the near and far
keywords.

Example 1

The first example illustrates the case where a program is able to access data in a different bank regardless of the
compiler memory model used.

File A:

extern char far bigArray[];
char myArray[10];

int
func(void)

bigArray[0] = 0;
myArray[0] = 0;

}

File B:

#pragma section udata=bigudata,offset $3:0000,ref_only

char far bigarray[32768];

The reference to bigArray in file A will always use long absolute addressing mode since it has been declared far.
The reference to myArray will always use absolute addressing mode since it will be near by default. The compiler
model has no effect.

Example 2

This example illustrates the use of pointers when accessing far data.

File C:

extern char far bigArray[];

void
func(void)

char far *fp;
char *cp;

fp = bigArray;
*fp = 0;
cp = bigArray;
*cp = 0;

In this example, two pointers are declared. The first, fp, is considered a pointer to far char data. It will always
work correctly since it will always contain the 24 address of the object being addressed. The second pointer, cp,
takes the default class based on the memory model. If the memory model is small or medium, then it is
considered a pointer to near char data. In this case, an error would be generated when bigArray is assigned to

 W65C816S C Compiler/Optimizer

25

cp since bigArray generates a 24 bit address, but cp is only a 16 bit pointer. If the memory model is large or
compact, then the default class is pointer to far char data and no error would be generated.

Example 3

This example attempts to put far pointers versus far data in perspective by using a confusion tactic.

File D:

char far * far ffp;
char near * far nfp;
char far * near fnp;
char near * near nnp;

These statements involve four pointers. All pointers must be copied to direct page before they can be used to
access the data that they point to.

char far * far ffp;

This pointer is located in far memory as indicated by the far keyword immediately preceding the variable name. A
long absolute (24-bit) addressing mode is used to load its value into the direct page. The object pointed to by this
pointer is also in far memory as indicated by the keyword far immediately preceding the pointer character, `*'.
Thus, the value loaded into the direct page will be a 32 bit value.

char near * far nfp;

This pointer is also located in far memory. However, it points to an object in near memory and thus only 16 bits
will be loaded into direct page to access the value pointed at.

char far * near fnp;

This pointer is located in near memory as indicated by the near keyword immediately preceding the variable
name. A 16-bit absolute addressing mode is used to load its value into the direct page. The object pointed to by
this pointer is in far memory as indicated by the far keyword immediately preceding the pointer character, `*'. A
32 bit value will be loaded from the data bank segment and used to access far memory.

char near * near nnp;

This pointer is located in near memory and points to near data. A 16-bit reference to the current data bank will
fetch a 16-bit pointer that will be used to access data also in the current data bank.

Example 4

This example shows how the near keyword is used with functions.

File E:

void near localfunc(void)
 {
 }

void globalfunc(void)
 {

localfunc();
}

This example is useful when compiling with the large or medium compiler models. In these models, all calls to
functions use a JSL instruction to call and an RTL instruction to return. Functions can be located anywhere in
memory without any difficulty.

 W65C816S C Compiler/Optimizer

26

This example illustrates the case where a function will only be called from within the same bank of memory. In
that case, only a JSR/RTS is needed to call and return from the function. Since the function localFunc has been
declared to be near, all calls that use the declaration will use JSR to call the function. NOTE!!! If a function calls a
routine without the proper prototype declaration within scope, then it could use the wrong calling sequence
depending on the compiler mode used! The next example will clarify this.

Example 5

This example illustrates how near and far affect function pointers.

File F:

void
func(int (far *pFunc)(void))

 {
pFunc();

 }

Okay, the function, func, is called with a pointer, pFunc, to another function. Now, since pFunc is a far pointer, a
JSL will be used to call the function. This is important since if the function has been declared far either explicitly
or implicitly it will use an RTL to return.

 Thus, YOU CAN NEVER ASSIGN A NEAR FUNCTION TO A FAR POINTER OR VICE VERSA.

Example 6

This example illustrates the use of far functions.

File G:

extern void far func(void);

void myFunc(void)
 {

func();
 }

This example is useful if a program or part of a program fits mostly within a single bank. Then, to make the
program smaller, it can be compiled with the small or compact memory model to generate shorter calls and
function overhead. Then, other functions might be declared far and placed in a different bank. When these
functions are called, a long absolute address is used.
NOTE!!! The far function may not call any functions that are outside of the its bank unless those functions have
also been declared far.

When using far pointers, positive indexing must be used. Using the –SO option automatically tells the compiler to
assume positive short indexing. Thus, incrementing a pointer by one assumes that it only affects the lower 16
bits. To disable the short indexing when using far pointers, compile with –SO0S.

Large Programs

If a program has more functions than will fit within a 64K bank of memory, then it's code must be split into different
banks. When each file is compiled all program code is placed into the CODE segment by default. When the
program is linked all CODE segment pieces are collected and adjusted to load into memory at the specified
CODE segment start address. If the segment exceeds a 64K bank limit, the linker will produce an error message.

To split a program into different banks, some functions must be compiled into a segment with a different name.
This is accomplished using the 'section' pragma in the compiler. The section pragma can occur anywhere within

 W65C816S C Compiler/Optimizer

27

a file outside of any function definition. The section pragma allows any of the compiler default section names to
be changed.

For example:

#pragma section CODE=BANK3,offset $3:0000

will cause the compiler to generate a section definition statement defining section `BANK3' which will start at
location 0 in bank 3. Note that it is not required to specify a starting address for the section. The starting address
can be specified at link time using a linker option Otherwise, it will simply follow the most recently defined section.
Multiple section pragmas may occur in the same file. For example, this file places the first function in section
BANK3, the second function back in the CODE and the third function in BANK3 as well.

#pragma section CODE=BANK3,offset $3:0000
void func1(void) {}

#pragma section CODE=CODE
void func2(void) {}

#pragma section CODE=BANK3
void func3(void) {}

Note that any section modifiers such as OFFSET or REF_ONLY only have an effect on the first section definition
seen by the compiler. Thus, in:

#pragma section CODE=BANK3,offset $3:0000

#pragma section CODE=CODE

#pragma section CODE=BANK3,offset $3:1000

the third pragma produces an error by the compiler.

 #pragma section CODE=BANK3,REF_ONLY $3:0000

REF_ONLY builds a section that will not be initialized at startup time.

Caveats

This section discusses some special cases regarding memory model management. Because of the way ANSI C
defines the handling of un-initialized data, storage is not allocated until the end of the source file. This is
necessary since the following program is quite legal:

int i;
int i = 1;

The first declaration of i is called a tentative definition that is superceded by the later definition. This causes a
problem with memory management only if attempts are made to place un-initialized data into two different
sections within a single file. For example:

#pragma section UDATA=BANK1

int i;

 W65C816S C Compiler/Optimizer

28

#pragma section UDATA=BANK2

int j;

In this case, since both i and j are tentative definitions, the storage is not allocated until the end of the file.
Therefore, both will be in the BANK2 section.

Floating Point Considerations

All operations are assumed to be “double”.

The compare, subtraction, multiplication, etc. are treated as “double” operations. The constants are converted to
“doubles”. If you follow the constants with an f, as in 0.0f, it will do a single precision compare or subtract. If the
constant is a double, (which it is by default), then the operations used are promoted to double as well.

Manual optimization of double to float can be accomplished.
The “f” modifier can be used to generate faster and perhaps smaller code.
Be especially watchful for compound equivalencies, i.e. +=, -=, etc…

Example #1: (where x is a float)
if (x<0.0) can also be written as: if (x<0.0f) or if (x< (float)0.0)
The addition of the “f” forces the compiler to stay in floating point mode.

The transcendental functions can also be rewritten to stay mostly in floating point, so as to be about three (3)
times faster.

Example #2:
X += 0.1234567; should be written as x+= 0.1234567f;

 W65C816S C Compiler/Optimizer

29

Pragmas

The pragma preprocessor directive allows control of the compiler operation in a portable manner. Pragma
statement syntax is defined by the compiler creator and pragmas not recognized by a compiler are simply
ignored. The following sections discuss the syntax and purpose of pragmas supported by the WDC C compiler.

Section Pragma

The SECTION pragma is used to redefine one of the names of the predefined sections used by the compiler.
The default section names and their use are:

CODE - all program code
DATA - all initialized data
UDATA - all un-initialized data
KDATA - all initialized, non-modifiable data

By default, the compiler only uses the first three. Constant initialized data is treated as modifiable initialized data
unless the -MU option has been specified. This option places all initialized data that has been qualified as not
being modifiable in the CONST section which defaults to KDATA. Strings are handled separately and by default
are placed in the DATA section. If the -MV option is specified, then strings are placed int the STRING section
which also defaults to the KDATA section. The syntax of the SECTION pragma is:

#pragma SECTION TYPE=name[,qualifier[,...]]

The type names recognized by the pragma type and their default values are:

 TYPE DEFAULT QUALIFIER

CODE CODE OFFSET
DATA DATA REF_ONLY
UDATA UDATA
CONST DATA unless `-MU' then KDATA
STRING DATA unless `-MV' then KDATA

To define a setaside un-initialized data area, use the following:

#pragma SECTION DATA=BANK3,REF_ONLY $3:0000

The qualifiers are the same as those for the SECTION directive in the assembler. (See Chapter 12 of the
Assembler Manual) The compiler will generate a SECTION directive the first time that a new section name is
defined. Any extra qualifiers will be copied exactly to the SECTION directive in the assembly language output file.
See the SECTION directive in the Assembly Language manual for more information.

Consts and Strings

Four options are available for manipulating constant data and strings. Constant data is any initialized data
declared using the const keyword. Normally both are just considered part of initialized data and are not handled
any differently. By using the -MU option, constant data will be placed in what the compiler considers the CONST
section. This section defaults to the KDATA section at the assembly level. To change the CONST section, use
the section #pragma statement.

#pragma section CONST=yournamehere

 W65C816S C Compiler/Optimizer

30

Similarly, using the -MV compiler option will place strings in the compiler STRING section. This section also
defaults to KDATA. Even though strings and/or constants are placed in the KDATA section, references to them
are made using short absolute or 16-bit addresses. This means that the KDATA section or whatever section has
been used must be located in the current data bank. For strings or constants that are to be placed in a different
bank, the compiler supports two additional options that change all references to constant data or string data to far
references. The -MK option changes all references to const data to be far references, while the -MT option does
the same for strings.

Example

The following compiler command and linker command will place constants into the KDATA section, make all
references to the const data use long absolute addressing and place the KDATA section into Bank 0. Program
code is also in Bank 0 and initialized and un-initialized data is in Bank 1. This might occur if ROM was located in
Bank 0 and scratch RAM was located in Bank 1. It would be a waste of RAM to copy constant data from ROM to
RAM.

WDC816CC -mku program.c
WDCLN -c8000 -d10000, program

The program CODE section is in ROM starting at $8000 immediately followed by section KDATA followed by
section DATA. Although the DATA section is in ROM, it is linked as though it will reside in RAM at $1:0000. The
program startup code will copy it from ROM to RAM. The const data will stay in ROM and will be accessed using
far addressing.

Input/Output Port Addressing

Even though the compiler supports four memory models, dealing with I/O ports at fixed addresses is a special
issue. Fortunately it is very simple. All you need to do is to cast a constant address to be a pointer to the type of
port being addressed. The compiler treats constant pointers special and always uses long absolute addressing
mode. For example, if you have a byte sized port at location $FF:F002, then the following line defines PortA:

#define PortA (*(unsigned char *)0xfff002)

Now, PortA can be used explicitly in assignments or expressions and the compiler will generate absolute long
addressing regardless of memory model or where the DATA section has been located.

Referencing I/O

Hardware addressing of I/O can be done from 'C' in many ways. The following examples we compiled as the
Small Memory Model.

The #define has advantages that it can easily address across page boundaries.
One of the fastest & least amount of code generated is:

For 8 bit I/O you can use
#define comx ((volatile uchar *)0x200003) // used for indexed addressing
 x = *comx;
This produces the code:
 sep #$20
 lda >2097155 ;This is a long addressing mode (32 bit)
 sta <L3+x_1
 rep #$20

 W65C816S C Compiler/Optimizer

31

To index
comx[2] = 0x02;
This produces the code:
 longa off
 sep #$20
 lda #$2
 sta >2097157

comx[0] = 0x31; //Xmit char '1'
This produces the code:
 lda #$31
 sta >2097155
 longa on
 rep #$20

Therefore to address a structure for a UART, one way could be to:
#define comx ((volatile uchar *)0x200003) // used for indexed addressing
#define RECV 0
#define IER 1 //Interrupt Enable Register
#define ISR 2 //Interrupt Status Register
#define LCR 3 //Line Control Register
#define MCR 4 //Modem Control Register
#define LSR 5 //Line Status Register
#define MSR 6 //Modem Status Register
#define SPR 7 //Scratchpad Register

to address the Scratchpad Register would be:
 comx[SPR] = 0x00;

Standard Addressing modes for 'C' product larges & slower code because all references are indirect (i.e.
pointers)

For 8 bit I/O you can use
volatile unsigned char *rtc2_year = (unsigned char *)0xA080; //
 x=*rtc2_year; //Read data from Address
This produces the code:
 lda |__rtc2_year
 sta <R0
 sep #$20
 lda (<R0)
 sta <L3+x_1
 rep #$20

For 16 bit I/O you can use
volatile int *hw16_multiplier = (int *)0xA080; //
 *hw16_multiplier = y;
This produces the code:
 lda |__hw16_multiplier
 sta <R0
 lda <L3+y_1
 sta (<R0)

 W65C816S C Compiler/Optimizer

32

For 32 bit I/O you can use
volatile long *hw32_multiplier = (long *)0xA080; //
 *hw32_multiplier = z;
This produces the code:
 lda |__hw32_multiplier
 sta <R0
 lda <L3+z_1
 sta (<R0)
 lda <L3+z_1+2
 ldy #$2

Another example of referencing I/O using the pre-processor:

#define VIA_BASE F0H
#define IO_VIA_DDRBNH (VIA_BASE+2)
#define io_and_port2(port, mask, twenty) asm{ php; longa off; sep twenty; lda port; and mask; sta port; plp;}
io_and_port2(IO_VIA_DDRBNH, #$72, #$20)
In-Line Assembly Code

Assembly language statements can be embedded within C source code by surrounding the assembly code with
the statements #asm and #endasm. Embedded assembler code should make no assumptions about the
contents of the registers.
 For example,

int
test(void)

 {
int foo;

#asm

stz %%foo
#endasm

 return(foo);
}

Since #asm and #endasm are pre-processor directives, the lines between would normally be considered white
space by the compiler. To avoid this, a null statement is generated for the parser. Support is also provided to
access predefined macros, function arguments, local variables, file scope static identifiers, and global variables.
To access these from within a #asm block, precede the identifier name with % %. When passing output to the
assembly language file, the compiler checks for the pattern % % symbol. When found, it checks to see if symbol
matches any pre-defined macros and replaces it with the actual macro value. If a macro is not found, it next
checks for variable name matches following the standard C scoping rules. If found, the proper stack offset or
variable name is substituted. For global variables, the appropriate combination of the `_' and `~' characters are
prepended to the global symbol name.

The following directives can be used before and after in-line assembly statements:

asmstart and asmend

The Optimizer will treat any lines that are between these two directives as comments.

 W65C816S C Compiler/Optimizer

33

ASM Keyword

The compiler now supports an asm keyword. The statement following the keyword is passed to the output file
directly and is not interpreted by the compiler except for macro substitution. The statement must be terminated
by a `;'. Multiple statements, each terminated by a `;' may be enclosed within braces. Variables may be
referenced by name using the `%%' convention discussed under the #asm preprocessor directive. Labels must
be followed by a colon.
Examples

void test(int value, int count)

 asm cli;

 asm lda %%value; ldx %%count;
 mylab: sta >$1:0000,X; dex; bne mylab; }

 asm { lda %%value; sep #$20;}

#define clrmem asm { lda %%value; ldx %%count; \
loop: sta >$1:0000,X; dex; bne loop; }

 clrmem;
 }

Producing Optimum Code

There are two things that can greatly improve the quality of the code generated by the compiler. First, use
unsigned ints and chars whenever possible. Signed chars and ints require many more instructions when sign
extending or comparing. As a result chars are unsigned by default and you must use the `signed' keyword to get
signed chars. Second, make sure all array and pointer indexes are non-negative and use the -SI option. The
index registers X and Y are essentially unsigned indexes and can only be used if all indexes are positive.

Optimizer

This version of the compiler comes with a post-pass-peephole optimizer called WDC816OP. This optimizer
operates on the assembly language output of the compiler and performs a number of optimizations that generally
save about 10 percent on code size depending on the program. To invoke the optimizer, use the -SP option. If -
SP is used in conjunction with -A, the output file will contain the optimized assembly language. Note that the
optimizer makes assumptions about the format of the assembly language output of the compiler and will not
operate properly on hand-written assembly language programs.

The following optimizer options support the corresponding compiler options:

-L Call the assembler with the listing option.
-LW Call the assembler with the wide listing option.
-K Causes the path name specifying the name of the listing file to be place in the reserved word

__FILE__.

Floating Point

The compiler supports IEEE-754 1985 single and double precision floating point variables and arithmetic. No
option is necessary to access the floating point feature. All floating point operations with the exception of
assignment are performed by pushing the operands on the stack and calling assembly language routines. These
assembly language routines are located in a special floating point library along with the standard mathematical
library routines. Please see the library CHAPTER for the names and linking conventions. The floating point
library also contains versions of printf and scanf that work with floating point values.
Interrupt Routines

 W65C816S C Compiler/Optimizer

34

The compiler supports a function qualifier `interrupt'. Functions declared with this qualifier will save and restore
registers and will return with an `rti' instruction. These functions can be called directly from the interrupt vector
table as long as the functions are located in Bank 0.
 For example,

interrupt void
test(void)

 {
 extern int Int_happened;

Int_happened = 1;
 }

#asm
 org $ffee ; 65816 IRQ vector
 dw __test

#endasm

On an interrupt, this function would be called from the vector. The function would save all registers, execute the
code of the function and the return from the interrupt using the `rti' instruction.

Prototyping Functions

The W65C816 C Compiler supports the new definitions of declaring parameters. If the old style declaration is
used, an error will occur. For Example;

OLD STYLE:
//Prototype
VOID foo (float f);
.
.
VOID foo (f)
float f;
{
.
}
The above will produce an error and needs to be replaced by the newer style, as shown below.

//Prototype
VOID foo (float f);
.
.
VOID foo (float f)
{
.
}

Variable Name Length

The maximum number of characters used in a variable name is 64 characters. After the first 64 characters, the
internal variable name is truncated.

Debugging

The linker does not generate any information of static variables declared inside a function. This is because a
static variable defined may be declared in more than one function. Thus, the compiler simply generates an
internal label for it and allocates space for it.

 W65C816S C Compiler/Optimizer

35

Assembling Compiler Output Considerations

DO NOT use the –g option when assembling the output from the compiler. The –g option is only to be used when
you want debug information from an assembly language file. Using the –g option to assemble the output from the
compiler will cause an error in the symbol file.

The following example will generate an error in the generated symbol file:

WDC816CC.EXE –at –ms –mu –mv –bs –sop –wl –wr –wd
WDC816AS.EXE –g –l –DDEBUG

Volatile Qualifiers

Please note that local variables CANNOT be declared as volatile inside a function body. To declare a variable as
volatile inside a function body, it must be static. This is a limitation of the compiler.

Declaring a variable as volatile OUTSIDE a function body, (global scope):
volatile unsigned char char_volatile;

Declaring a variable as volatile INSIDE a function body, (static local variable);
static volatile unsigned char char_volatile

The following WILL NOT work when declared INSIDE a function body, (local variable):
volatile unsigned char char_volatile

Negative Array Indexes

The compiler cannot detect at compile time that the variable index in an array will at some point contain a
negative value. Therefore, the user should make use of the –SI option. With this option, the compiler assumes
that all index values are non-negative and will generate the smaller, faster form of addressing. Please see page
22 for more information on the –SI option.

Global Variable and Function Declarations

The C standard states that you cannot have a global variable and a function declared with the same name. If you
do this, you will get the following error: Error 90: Symbol redeclared. The following is invalid code:
Unsigned char error;
Void error()
{
}

CHAPTER 4 Libraries

This CHAPTER describes the standard library functions provided with the WDC C Development System.

Library Names (WDC_SDS\LIBSRC)

There are two main libraries provided with the WDC C Development System. The Cx.LIB contains all the
standard C functions and some special functions need by compiler generated code for operations like multiply

 W65C816S C Compiler/Optimizer

36

and divide. The Mx.LIB contains the standard floating point math functions and floating point emulation routines.
There is one version of the library for each of the four memory models. The libraries and their memory models
are:

 Standard Internal ‘C’ Functions

CS.LIB SMALL model
CC.LIB COMPACT model
CM.LIB MEDIUM model
CL.LIB LARGE model

 Floating Point Special Functions

MS.LIB SMALL model
MC.LIB COMPACT model
MM.LIB MEDIUM model
ML.LIB LARGE model

If the WDC_LIB environment variable has been set to point to the directory containing the library files, then the -L
option can be used to access the libraries when linking. For example, the command:

WDCLN PROG.OBJ -LCL

will look for functions in the LARGE model library CL.LIB.

When linking with the floating point library, be sure to specify it before the standard library in the linker command
line. This will insure that the proper version of printf and scanf are used. If floating point numbers do not print out
at all, check to see if the libraries are in the proper order.
 Example:

WDCLN PROG.OBJ -LMM -LCM

will look for functions in the MEDIUM model libraries MM.LIB and CM.LIB.

NOTE: If the floating point library is not needed, do not link it as this will result in larger code size!

ANSI Functions

For a list of the standard ANSI functions, in the form of function prototypes, that are supported by the W65cSDS,
please refer to Appendix A.

 W65C816S C Compiler/Optimizer

37

Heap Functions

The ANSI standard library includes functions for allocating, freeing and reallocating memory from a memory heap.
The WDC C Development System supports a heap built on top of the sbrk() function. This function allocates
memory from a heap area that is specified by the programmer. The beginning of the heap is specified by
declaring and initializing the two variables, heap_start and heap_end. The sbrk() function begins by allocating
memory starting at heap_start and will continue to allocate until heap_end is reached. For the small and
medium models, the heap must be in bank zero, while for the compact and large models, the heap may be
anywhere in memory and of any size.

For example:

void *heap_start = (void *)0xa000, *heap_end = (void *)0xd000;

void *heap_start = (void *)0x28000, *heap_end = (void *)0x48000;

The first example allocates 0x3000 bytes of space in the zero bank. The second example allocates 128K of
space in banks 2, 3 and 4. The ANSI functions that use the heap are malloc, calloc, realloc, and free. The sbrk
function is not an ANSI function. The small and medium model libraries also contain the functions farsbrk,
farmalloc, farfree, farrealloc, and farcalloc. These functions use full 32 bit pointers which must be declared as far
in these models.

To have the heap start at the end of the “Unitialized Data” area, use the following statements:

extern char _END_UDATA:
void *heap_start = (void *)&_END_UDATA, *heap_end = (void *)(&_END_UDATA + nnn);

Making ‘C’ Callable Assembly Language Functions

For example, please see:
C:\Wdc_Sds\Application_C_Function_Library\W65C816_C_Applications\65C22_10msec_Timer_Function

 module init_timer_ms
 xdef __init_timer_ms ;Timer Stuff - Small Model Function Calls
; xdef ~_init_timer_ms ;Timer Stuff - Medium Model Function Calls
; xdef ~~init_timer_ms ;Timer Stuff - Large Model Function Calls
; xdef _~init_timer_ms ;Timer Stuff - Compact Model Function Calls

 xref VIA_T1CLO
 xref VIA_T1CHI
 xref VIA_T1LLO
 xref VIA_T1LHI
 xref __h1000hz ;Global Var - Small Model Variable References
; xref ~_h1000hz ;Global Var - Medium Model Variable References
; xref ~~h1000hz ;Global Var - Large Model Variable References
; xref _~h1000hz ;Global Var - Compact Model Variable References
 xref T1CONT
 xref VIA_ACR
 xref IFR_TMR1
 xref IFR_IRQ
 xref VIA_IER

 W65C816S C Compiler/Optimizer

38

TIMER_COUNT equ 3 ;Passed Parameter to go in Timer #1 Latches - Variable __timer_count
(2 bytes)

__init_timer_ms: ;Timer Stuff - Small Model Function Calls
;~_init_timer_ms: ;Timer Stuff - Medium Model Function Calls
;~~init_timer_ms: ;Timer Stuff - Large Model Function Calls
;_~init_timer_ms: ;Timer Stuff - Compact Model Function Calls

 SEP #$20 ;SET Acc SHORT
 LONGA OFF

; SEI ; Disable IRQ's (Usually not needed, because they aren’t enabled yet)

 LDA TIMER_COUNT,s
 STA VIA_T1CLO
 STA VIA_T1LLO
 LDA TIMER_COUNT+1,s
 STA VIA_T1CHI
 STA VIA_T1LHI
 STZ __h1000hz ;Zero Timer count
 LDA #T1CONT ;Set TIMER #1 "Continuous" mode

 ...Rest of code Here

 REP #$20 ;SET Acc Long
 LONGA ON

 PLY ;Restore stack
 PLY
 RTS
 endmod ;End of module ~init_timer

 W65C816S C Compiler/Optimizer

39

APPENDIX A WDC Supported C Functions

The following is a list of the standard ANSI functions in the form of function prototypes. These functions are listed
by the header file in which they are defined.

Assert.h
 assert - Debugging macro
void _assert(char *, char *, unsigned int);

Ctype.h
Character tests and conversions, some are also macros

 int isalnum(int _c); - test for letter or digit
 int isalpha(int _c); - test for alphabetic
 int isascii(int _c); - test for < 0x80
 int iscntrl(int _c); - test for control character
 int isdigit(int _c); - test for digit
 int isgraph(int _c); - test for non-printable chars
 int islower(int _c); - test for lower case letter
 int isprint(int _c); - test for printable chars
 int ispunct(int _c); - test for punctuation character
 int isspace(int _c); - test for space (0x09 to 0x0d or 0x20)
 int isupper(int _c); - test for upper case letter
 int isxdigit(int _c); - test for hex digit (0..9 or a..f or A..F)
 int toupper(int _c); - convert to upper case (if a letter)
 int tolower(int _c); - convert to upper case (if a letter)
 int toascii(int _c); - convert to ascii (remove sign)

Errno.h
Error code definitions and table returned by the errno() function.

 extern char *sys_errlist[]; - pointer to system standard error list
 extern int sys_nerr; - variable of system standard errors

Fcntl.h Low Level I/O
int creat(const char *_name, int _mode);
int open(const char * _name, int _mode);
int close(int);
size_t read(int, void *, size_t);
size_t write(int, void *, size_t);
long lseek(int, long, int);
int unlink(const char *);
void _exit(int _code);
void _abort(void);

Float.h
Floating point definitions for values of constants. (Ranges of max/min & standard floating point values for math
symbols.)

Io.h
Not Defined by WDC.

 W65C816S C Compiler/Optimizer

40

Limits.h
Limits that apply to variable “types”. i.e. unsigned short variable value range.

Locale.h
How Time,Date and Currency are formatted in other countries

Setlocale - selects the appropriate programs locale LC_ALL, etc.
char *setlocale(int _category, const char *_locale);

NON-ANSI
struct lconv *localeconv(void); - sets the components of an object with type struct lconv with values appropriate
for the formatting of numeric quantities (monetary and otherwise) according to the rules of the current locale.

Math.h
Math Functions

 double acos(double); - inverse cosine
 double asin(double); - inverse sine
 double atan2(double, double); - inverse tangent of y/x
 double atan(double); - inverse tangent
 double atof(const char *); - ASCII to binary Floating point equivalent
 double ceil(double); - smallest integer >= argument (as double)
 double cos(double); - cosine
 double cosh(double); - hyperbolic cosine
 double cotan(double); - cotangent
 double exp(double); - exponential
 double fabs(double); - double floating point to absolute (Assembly Language)
 double floor(double); - largest integer <= argument
 double fmod(double, double); - floating modulus
 double frexp(double, int *); - returns mantissa of floating point number as a normalized fraction in the range
[0.5,1.0] (Assembly Language)
 double ldexp(double, int); - calculates X times 2 raised to the exp power
 double log10(double); - base ten logarithm
 double log(double); - natural logarithm
 double modf(double, double *); - return integer and fractional parts of number
 double pow(double, double); - x raised to the power of y
 power - See pow. (These are equated, therefore they are interchangeable)
 double sin(double); - sine
 double sinh(double); - hyperbolic sine
 double sqrt(double); - square root
 double tan(double); - tangent
 double tanh(double); - hyperbolic tangent

NON-ANSI
 double ran(void); - REAL pseudo-random number generation uniformly distributed on (0.0 to 1.0) [This
program was written by W. J. Cody, Jr., as part of the ELEFUNT test package.]
 double randl(double); - REAL pseudo-random number logarithmically distributed on (1,exp(x)). [This program
was written by W. J. Cody, Jr., as part of the ELEFUNT test package.]
 void sran(long); - seed for ran and randl

 W65C816S C Compiler/Optimizer

41

Setjmp.h (Not Yet Implemented)
Jump functions

 int setjmp(jmp_buf _env); - save context
 void longjmp(jmp_buf _env, int _val); - jump to location saved in setjmp

Signal.h (Not Yet Implemented)
Defines the conditions for error traps.

 void (*signal(int _sig, void (*_func)(int)))(int); - make function a signal handler
 int raise(int _sig); - generate signal

 Stdarg.h
Defines for using variable number of arguments for functions

va_arg(char *ap,type) where type is int,char,long,float,etc… - Variable number of Arguments
va_end(char *ap) - Variable number of Arguments End
va_start(char *ap, char *parmN) - Variable number of Arguments Start of Definitions

Stddef.h
Many common constants, identifiers, typedefs, and variables.

Stdio.h
Higher level I/O Functions.

 void clearerr(FILE *_stream); - reset error conditions on a file
 int fclose(FILE *_stream); - close a file (file pointer)
 int feof(FILE *_stream); - check for end of file (file pointer)
 int ferror(FILE *_stream); - return error status for a file
 int fflush(FILE *_stream); - write file buffers to a file
 int fgetc(FILE *_stream); - read a single character from a file
 int fgetpos(FILE *_stream, fpos_t *_pos); - return current file position
 char *fgets(char *_s, int _n, FILE *_stream); - read string from selected file
 FILE *fopen(const char *_filename, const char *_mode); - open a file
 int fprintf(FILE *_stream, const char *_format, ...); - write a formatted line to a file
 int fputc(int _c, FILE *_stream); - write a single character to a file
 int fputs(const char *_s, FILE *_stream); - write string to selected file
 size_t fread(void *_ptr, size_t _size, size_t _nmemb, FILE *_stream); - read from file using file pointer
 FILE *freopen(const char *_filename, const char *_mode, FILE *_stream); - reopen a file
 int fscanf(FILE *_stream, const char *_format, ...); - get a formatted line from a file
 int fseek(FILE *_stream, long int _offset, int _whence); - seek to position using file pointer
 int fsetpos(FILE *_stream, const fpos_t *_pos); - position file to a location previously returned by fgetpos
 long int ftell(FILE *_stream); - return current file position
 size_t fwrite(const void *_ptr, size_t _size, size_t _nmemb, FILE *_stream); - write to a file with item size & item
count
 int getc(FILE *_stream); - get character from a file
 int getchar(void); - get character from stdin (also a macro in stdio.h)
 char *gets(char *_s); - read string from stdin
 void perror(const char *_s); - maps the error number in the integer expression errno to an error message
 int printf(const char *_format, ...); - write a formatted line to a stream
 int putc(int _c, FILE *_stream); - write a character to a file
 int putchar(int _c); - write a character to stdout (also a macro in stdio.h)
 int puts(const char *_s); - write string to stdin

 W65C816S C Compiler/Optimizer

42

 int remove(const char *_filename); - causes the file whose name is the string pointed to by filename to be no
longer accessible by that name
 int rename(const char *_old, const char *_new); - causes the file whose name is the string pointed to by old to
be henceforth known by the name given by the string pointed to by new
 void rewind(FILE *_stream); - position a file to the beginning
 int scanf(const char *_format, ...); - get a formatted line from a stream
 void setbuf(FILE *_stream, char *_buf); - set the address of the buffer for a file
 int setvbuf(FILE *_stream, char *_buf, int _mode, size_t _size); - set the address and size of the buffer for a file
 int sprintf(char *_s, const char *_format, ...); - equivalent to fprintf, except that the arguments specifies an array
into which the generated output is to be written
 int sscanf(const char *_s, const char *_format, ...); - equivalent to fscanf, except that the argument specifies a
string from which the input is to be obtained, rather than from a stream
 FILE *tmpfile(void); - creates a temporary binary file that will automatically be removed when it is closed or at
program termination
 char *tmpnam(char *_s); generates a string that is a valid file name and is not the same as the name of an
existing file
 int ungetc(int _c, FILE *_stream); - reverse of getc
 int vfprintf(FILE *_stream, const char *_format, char *_arg); - equivalent to fprintf, with the variable argument list
replaced by arg, which has been initialized by the va_start macro
 int vprintf(const char *_format, char *_arg); - equivalent to fprintf, with the variable argument list replaced by arg
 int vsprintf(char *_s, const char *_format, char *_arg); vsprintf - equivalent to sprintf, with the variable argument
list replaced by arg, which has been initialized by the va_start macro

NON-ANSI
 int _filbuf(FILE *); - internal function
 int _flsbuf(FILE *, int); - internal function flushes the specified stream

Stdlib.h
Commonly used Library Functions.

 void abort(void); - abnormal termination
 int abs(int _j); - absolute value of integer
 int atexit(void (*_func)(void)); - set function to call during exit
 double atof(const char *_nptr); - convert ascii to floating point
 int atoi(const char *_nptr); - convert a string to an integer
 long int atol(const char *_nptr); - convert a string to a long integer
 void *bsearch(const void *_key,const void *_base,size_t _nmemb,size_t _size,int (*_compar)(const void *,const
void *)); - performs a binary search on the elements of a sorted array in order to locate an element that contains a
specific value
 void *calloc(size_t _nmemb, size_t _size); - allocate with size, count
 div_t div(int _numer, int _denom); - Divide and return both quotient and remainder
 void exit(int _status); - normal exit & close files
 void free(void *_ptr); - causes the space pointed to by ptr to be deallocated, that is, made available for further
allocation
 void ftoa(double _val, char *_buf, int, int); - convert floating point to ascii
 long int labs(long int _j); - long absolute value
 ldiv_t ldiv(long int _numer, long int _denom); - long divide and return both quotient and remainder
 void *malloc(size_t _size); - allocate with block size
 int mblen(const char *_s, size_t _n); - determines the number of bytes comprising the multibyte character
pointed to by s
 size_t mbstowcs(wchar_t *_pwcs, const char *_s, size_t _n); - converts a sequence of multibyte characters that
begins in the initial shift state from the array pointed to by s into a sequence of corresponding codes and stores
not more than n codes into the array pointed to by pwcs
 int mbtowc(wchar_t *_pwc, const char *_s, size_t _n); - stores the code in the object pointed to by pwc

 W65C816S C Compiler/Optimizer

43

 void qsort(void *_base, size_t _nmemb, size_t _size, int (*_compar)(const void *, const void *)); - sorts an array
of nmemb objects, the initial member of which is pointed to by base
 int rand(void); - integer random numbers (0 – 32565)
 void *realloc(void *_ptr, size_t _size); - expand memory block
 void srand(unsigned int _seed); - seed integer random number generator
 long int strtol(const char *_nptr, char **_endptr, int _base); - convert a string to a long integer
 unsigned long int strtoul(const char *_nptr, char **_endptr, int _base); - convert a string to an unsigned long
integer
 double strtod(const char *_nptr, char **_endptr); - convert a string to a double
 int system(const char *_string); - passes the string pointed to by string to the host environment to be executed
by a "command processor" in an implementation- defined manner
 size_t wcstombs(char *_s, const wchar_t *_pwcs, size_t _n); - converts a sequence of codes that correspond to
multibyte characters from the array pointed to by pwcs into a sequence of multibyte characters that begins in the
initial shift state and stores these multibyte characters into the array pointed to by s
 int wctomb(char *_s, wchar_t _wchar); - determines the number of bytes needed to represent the multibyte
character corresponding to the code whose value is wchar

NON-ANSI
 void far *farcalloc(unsigned long _nmemb, unsigned long _size); function allocates space for an array of
nmemb objects, each of whose size is size. The space is initialized to all bits zero
 void farfree(void far *_ptr); - space pointed to by ptr to be deallocated
 void far *farmalloc(unsigned long _size); - allocates space for an object whose size is specified by size and
whose value is indeterminate.
 void far *farrealloc(void far *_ptr, unsigned long _size); - changes the size of the object pointed to by ptr to the
size specified by size
 long double strtold(const char *_nptr, char **_endptr); - converts ASCII string to Long Double representation

String.h
String conversion Functions and Memory Functions

 void *memchr(const void *_s, int _c, size_t _n); - search memory for character
 int memcmp(const void *_s1, const void *_s2, size_t _n); - compare memory
 void *memcpy(void *_dst, const void *_src, size_t _n); - copy memory, byte access, allows overlap
 void *memmove(void *_dst,const void *_src, size_t _n); - move memory, byte access, allows overlap
 void *memset(void *_s, int _c, size_t _n); - fill a block of memory with a character
 char *strcat(char *_dst, const char *_src); - string concatenate
 strchr - search string for character
 int strcmp(const char *_s1, const char *_s2); - compare strings
 char *strcpy(char *_dst, const char *_src); - copy string
 size_t strcspn(const char *_s1, const char *_s2); - search for character not in set
 char *strerror(int _errnum); - maps the error number in errnum to an error message string
 size_t strlen(const char *_s); - return length of a string
 char *strncat(char *_dst, const char *_src, size_t _n); - string concatenate, check for length limit
 char *strchr(const char *_s, int _c); - search string for last occurance of character
 int strncmp(const char *_s1, const char *_s2, size_t _n); - compare strings for limited length
 char *strncpy(char *_dst, const char *_src, size_t _n); - copy string, limited length
 char *strpbrk(const char *_s1, const char *_s2); - search for character in set
 char *strrchr(const char *_s, int _c); - locate the last occurrence of a character in a string
 size_t strspn(const char *_s1, const char *_s2); - search for character not in set
 char *strstr(const char *_s1, const char *_s2); - search for one string in another
 char *strtok(char *_s1, const char *_s2); - split string into tokens

NON-ANSI
 char *index(char *_s, int _c); - search string for character
 void *memccpy(void *_dst, const void *_src, int _c, size_t _n); - copy memory & stop on character match

 W65C816S C Compiler/Optimizer

44

 char *rindex(char *_s, int _c); - search string for last occurance of character
 int strcoll(const char *_s1, const char *_s2); - string collation – See Locale
 char *strdup(char *_s); - make copy of a string in the heap
 size_t strxfrm(char *_s1, const char *_s2, size_t _n); - string transformation – See Locale
 void swapmem(void *_s1, void *_s2, size_t _n); - Swap the blocks of memory addressed by s1 and s2.

Time.h
Time and date conversion functions

 clock_t clock(void); - return execution time for current task
 time_t mktime(struct tm *_timeptr); - convert time as a structure to seconds
 time_t time(time_t *_timer); - get current time in seconds
 char *asctime(const struct tm *_timeptr); - convert binary time to a character string
 char *ctime(const time_t *_timer); - current time and date as a character string
 struct tm *gmtime(const time_t *_timer); - convert time in seconds to structure (Greenwich)
 struct tm *localtime(const time_t *_timer); - convert time in seconds to structure (local time zone)
 size_t strftime(char *_s, size_t _maxsize, const char *_format, const struct tm *_timeptr); - ascii time/date
according to format string
 double difftime(time_t _time1, time_t _time2); - difference between to times

 Zpage.inc
Page Zero temporary memory allocation for Functions and Floating point variables for the W65c02 and W65c134.

 W65C816S C Compiler/Optimizer

45

APPENDIX B Description of Compiler Error Messages

1: bad digit in octal constant

The only numerals permitted in the base 8 (octal) counting system are zero through seven. In order to
distinguish between octal, hexadecimal, and decimal constants, octal constants are preceded by a zero. Any
number beginning with a zero must not contain a digit greater than seven. Octal constants look like this: 01, 027,
003. Hexadecimal constants begin with 0x (e.g., 0x1, 0xAA0, 0xFFF).

2: obsolete

Error codes interpreted as obsolete do not occur in the current version of the compiler. Some simply no longer
apply due to the increased adaptability of the compiler. Other error codes have been translated into full messages
sent directly to the screen.

3: unterminated string

All strings must begin and end with double quotes (“). This message indicates that a double quote has remained
unpaired.

4: argument type mismatch

This warning is given if the argument specified in a function call does not match that of the function’s prototype.
Although the warning is given, the argument will be converted to the appropriate type before being passed. To
avoid the warning, the argument can be preceded by a type cast to the appropriate type.

5: invalid type for function

Functions may be declared to return any scalar type as well as certain aggregate types such as structures.
Functions are not allowed to return arrays. All definitions or declarations of a function or a function pointer that
return an array will generate this error message. For example:

 char (*f)()[];

6: inappropriate arguments

The declaration list for the formal parameters of a function stands immediately before the left brace of the function
body, as shown below. Undeclared arguments default to int, though it is usually better practice to declare
everything. Naturally, this declaration list may be empty, whether or not the function takes any arguments at all.
No other inappropriate symbols should appear before the left (open) brace.

badfunction(arg1, arg2)
shrt arg1; // misspelled or invalid keyword
double arg2;
{ // function body
}

goodfunction(arg1, arg2)
float arg1;
int arg2; // this line is not required
{ // function body
}

 W65C816S C Compiler/Optimizer

46

7: bad declaration syntax

A common cause of this error is the absence of a semicolon at the end of a declaration. The compiler expects a
semicolon to follow a variable declaration unless commas appear between variable names in multiple
declarations.

int i, j; // correct
char c d; // error 7
char *s1, *s2 // error 7 detected here
float k;

Sometimes the compiler may not detect the error until the next program line. A missing semicolon at the end of a
#include’d file will be detected back in the file being compiled or in another #include file. This is a good example
of why it is important to examine the context of the error rather than to rely solely on the information provided by
the compiler error message(s).

8: syntax error in typecast

The syntax of the cast operator must be carefully observed. A common error is to omit a parenthesis:

 i = 3 * (int number); // incorrect usage
 i = 3 * ((int)number); // correct usage

9: invalid operand of & (address of)

This error is given if the program attempts to take the address of something that does not have an address
associated with it.

 #define FOUR 4
 char *addr;

 addr = &FOUR; // error 9, can’t take address of a constant

10: array size must be positive integer

The dimension of an array must be greater than zero. A dimension less than or equal to zero becomes 1 by
default. As can be seen from the following example, a dimension of zero is not the same as leaving the brackets
empty.

 char badarray[0]; // meaningless
 extern char goodarray[]; // good

Empty brackets are used when declaring an array that has been defined (given a size and storage in memory)
somewhere else (that is, outside the current function or file). In the above example, goodarray is external.
Function arguments should be declared with a null dimension:

 func(s1, s2)
 char s1[], s2[];
 {
 …
11: obsolete

 W65C816S C Compiler/Optimizer

47

12: invalid pointer reference

This error message will occur if pointer indirection is attempted on a type which cannot physically represent a
pointer value. The only types, other than pointers themselves, which can hold pointer values, are int, short, and
long (as well as their unsigned counterparts). All other C types will generate this error. For example,

 char c;

 *c = 5;

will generate this error.

13: obsolete

14: obsolete

15: storage class conflict

Only automatic variables and function parameters can be specified as register.

This error can be caused by declaring a static register variable. While structure members cannot be given a
storage class at all, function arguments can be specified only as register.

A register int i declaration is not allowed outside a function – it will generate error 89 (see below).

16: data type conflict

The basic data types are not numerous, and there are not many ways to use them in declarations. The
possibilities are listed below.

This error code indicates that two incompatible data types were used in conjunction with one another. For
example, while it is valid to say long int I, and unsigned int j, it is meaningless to use double int k or float char
c. In this respect, the compiler checks to make sure that int, char, float and double are used correctly.

data type interpretation size(bytes)

char character 1
int integer 2
unsigned/unsigned int unsigned integer 2
short integer 2
unsigned short unsigned integer 2
long/long int long integer 4
unsigned long/unsigned long int unsigned long integer 4
float floating point number 4
long float/double double precision float 8

17: internal

This error message should not occur. It is a check on the internal workings of the compiler and is not known to be
caused by any particular piece of code.

 W65C816S C Compiler/Optimizer

48

18: data type conflict

This message indicates an error in the use of the long or unsigned data type. long can be applied as a qualifier
to int and float. unsigned can be used with char, short, int and long.

 long i; // a long int
 long float d; // a double
 unsigned u; // an unsigned int
 unsigned char c;
 unsigned long l;
 unsigned float f; // error 18

19: bad syntax

This error occurs if the #line preprocessor directive is followed by something other than a numeric constant or
macro that expands to one.

 #line 100 “filename” // correct
 #line “filename” // error 19

20: structure redeclaration

This message informs you that you have tried to redefine a structure.

21: missing }

The compiler requires a comma after each member in the list of fields for a structure initialization. After the last
field, it expects a right (close) brace.

For example, this program fragment will generate error 21, since the initialization of the structure named emily
does not have a closing brace:

 struct john {
 int bone;
 char license[10];
 } emily = {
 1,
 “23-4-1984”;

22: syntax error in structure declaration

This error occurs in a structure declaration that is missing the opening curly brace or when the left curly brace is
followed by a right curly brace with nothing but white space.

 struct // error 22, missing left curly brace
 int a;
 long b;
 }

 W65C816S C Compiler/Optimizer

49

23: syntax error in enum declaration

This error occurs in an enum specification that is missing the opening curly brace or when the left curly brace is
followed by a right curly brace with nothing but white space.

 enum colors {
 } // error 23, nothing in enumerator list

24: need right parenthesis or comma in arg list

The right parenthesis is missing form a function call. Every function call must have an argument list enclosed by
parentheses even if the list is empty. A right parenthesis is required to terminate the argument list.

In the following example, the parentheses indicate that getchar is a function rather than a variable.

 getchar();

This is the equivalent of

 CALL getchar

which might be found in a more explicit programming language. In general, a function is recognized as a name
followed by a left parenthesis.

With the exception of reserved words, any name can be made a function by the addition of parentheses.
However, if a previously defined variable is used as a function name, a compilation error will result.

Moreover, a comma must separate each argument in the list. For example, error 24 will also result from this
statement:

 funccall(arg1, arg2 arg3);

25: structure member name expected here

The symbol following the dot operator or the arrow must be valid. A valid name is a string of alphanumeric
characters or underscores. It must begin with an alphabetic character (a letter of the alphabet or an underscore).
In the last line of the following example, (salary) is not valid because ‘(‘ is not an alphanumeric character.

 empptr = & anderson;
 empptr->salary = 12000; // these three lines
 (*empptr).salary = 12000; // are
 anderson.salary = 12000; // equivalent
 empptr = &anderson.; // error 25
 empptr- = 12000; // error 25
 anderson.(salary) = 12000; // error 25

26: must be structure/union member

The defined structure or union has no member with the name specified. If the –s option was specified, no
previously defined structure or union has such a member either.Structure members cannot be created at will
during a program. Like other variables, they must be fully defined in the appropriate declaration list. Unions
provide for variably typed fields, but the full range of desired types must be anticipated in the union declaration.

 W65C816S C Compiler/Optimizer

50

27: invalid typecast

It is not possible to cast an expression to a function, a structure, or an array. This message may also appear if a
syntax error occurs in the expression to be cast.

 structure david { … } amy;
 amy = (struct david)(expression); // error 27

28: incompatible structures

C permits the assignment of one structure to another. The compiler will ensure that the two structures are
identical. Both structures must have the same structure tag. For example:

 struct david emily;
 struct david amy;

 emily = amy;

29: invalid use of structure

Not all operators can accept a structure as an operand. Also, structures cannot be passed as arguments.
However, it is possible to take the address of a structure using the ampersand(&), to assign structures, and to
reference a member of a structure using the dot operator.

30: missing : in ? conditional expression

The standard syntax for this operator is:

 expression ? statement1 : statement2

It is not desirable to use ?: for extremely complicated expressions; its purpose lies in brevity and clarity.

31: call of non-function

Error 31 is generated by an expression that attempts to call a data item. The following code will generate an error
31:

 int a;
 a();

Error 31 is often caused by an expression that is missing an operator. For example, Error 31 will be generated if
the expression a * (b + c) is coded as a (b + c).

32: invalid pointer calculation

Pointers may be involved in three calculations. An integral value can be added to or subtracted from a pointer.
Pointers to objects of the same type can be subtracted from one another and compared to one another. Since the
comparison and subtraction of two pointers is dependent upon pointer size, both operands must be of the same
size.

 W65C816S C Compiler/Optimizer

51

33: invalid type

The unary minus (-) and bit complement (~) operators cannot be applied to structures, pointers, arrays and
functions. There is no reasonable interpretation for the following:

 int function();
 char array[12];
 struct joey, alias;

 a = -array;
 b = -alice;
 c = -function & WRONG;

34: undefined symbol

The compiler will recognize ony reserved words and names which have been previously defined. This error is
often the result of a typographical error or due to an omitted declaration.

35: typedef not allowed here

Symbols which have been defined as types are not allowed within expressions. The exception to this rule is the
use of sizeof(expression) and the cast operator. Compare the accompanying examples:

 struct lucille {
 int i;
 } andrew;
 typedef double bigfloat;
 typedef struct lucille foo;

 j = 4 * bigfloat f; // error 35
 k = &foo; // error 35
 x = sizeof(bigfloat);
 y = sizeof(foo); // good

The compiler will detect two errors in this code. In the first assignment, a typecast was probably intended;
compare error 8. The second assignment makes reference to the address of a structure type. However, the
structure type is just a template for instances of the structure (such as andrew). It is no more meaningful to take
the address of a structure type than any other data type, as in &int.

36: obsolete

37: invalid or missing expression

This error occurs in the evaluation of an expression containing a unary operator. The operand either is not given
or is itself an invalid expression.

Unary operators take just one operand; they work on just one variable or expression. If the operand is not simply
missing, it fails to evaluate to anything its operator can accept. The unary operators are logical not (!), bit
complement (~), increment (++), decrement (--), unary minus (-), typecast, pointer-to (*), address-of (&), and
sizeof.

 W65C816S C Compiler/Optimizer

52

38: obsolete

39: enum redeclaration

This error occurs when an enum identifier is used more than once in defining the value of enumeration constants.

 enum states { NY, CA, PA };
 enum states { IL, FL, NJ }; // error 39

40: internal error

41: initializer not a constant

In certain initializations, the expression to the right of the equal sign (=) must be a constant. Indeed, only
automatic and register variables may be initialized to an expression. Such initializations are meant as a
convenient shorthand to eliminate assignment statements. The initialization of statics and globals actually occurs
at link-time, and not at run-time.

 {
 int i = 3;
 static int j = (2 + i); // illegal
 }

42: too many initializers

There were more values found in an initialization than array or structure members exist to hold them. Either too
many values were specified or there should have been more members declared in the aggregate definition.

In the initialization of a complex data structure, it is possible to enclose the initializer in a single set of braces and
simply list the members, separated by commas. If more than one set of braces is used, as in the case of a
structure within a structure, the initializer must be entirely braced.

 struct {
 struct {
 char array[1];
 } substruct;
 } superstruct =

 version 1:
 {
 “aBDdefghij”
 };

 version 2:
 {
 {
 { ‘a’, ‘b’, ‘c’, …, ‘i’, ‘j’ }
 }
 };

In version 1, the initializers are copied byte-for-byte onto the structure superstruct.

Another likely source of this error is in the initialization of arrays with strings, as in:

 W65C816S C Compiler/Optimizer

53

 char array[10] = “aBDdefghij”;

This will generate error 42 because the string constant on the right is null-terminated. The null terminator (‘\0’ or
0x00) brings the size of the initializer to 11 bytes, which overflows the ten-byte array.

43: initialization of undefined structure

An attempt has been made to assign values to a structure which has not yet been defined.

 struct david { … };
 struct dog david = { 1, 2, 3 }; // error 43

44: missing right paren in declaration

This error occurs in the declaration of a function pointer when the right parenthesis is left out.

 int (* fp)(); // error 44
 int (* fp(); // error 44

45: bad declaration syntax

This error code is an all purpose means for catching errors in declaration statements. It indicates that the
compiler is unable to interpret a word in an external declaration list.

46: missing closing brace

All the braces did not pair up at the end of compilation. If all the preceding code is correct, this message indicates
that the final closing brace to a function is missing. However, it can also result from a brace missing from an inner
block.

Keep in mind that the compiler accepts or regects code on the basis of syntax, so that an error is detected only
when the rules of grammar are violated. This can be misleading. For example, the program below will generate
error 46 at the end even though the human error probably occurred in the while loop several lines earlier.

As the code appears here, every statement after the left brace in line 6 belongs to the body of the while loop. The
compilation error vanishes when a right brace is appended to the end of the program, but the results during run
time will be indecipherable because the brace should be placed at the end of the loop.

It is usually best to match braces visually before running the compiler. A C-oriented text editor makes this task
easier.

main()
 {
 int i, j;
 char array[80];

 gets(array);
 i = 0;
 while (array[i]) {
 putchar(array[i]);
 i++;
 for (i=0; array[i]; i++) {
 for (j=i+1; array[j]; j++) {

 W65C816S C Compiler/Optimizer

54

 printf(“elements %d and %d are “, i, j);
 if (array[i] == array[j])
 printf(“the same\n”);
 else
 printf(“different\n”);
 }
 putchar(“\n”);
 }
 }

47: open failure on include file

When a file is #included, the compiler will look for it in a default area. This message will be generated if the file
could not be opened. An open failure usually occurs when the included file does not exist where the compiler is
searching for it. Note that a drive specification is allowed in include statement, but this diminishes flexibility
somewhat.

48: invalid symbol name

This message is produced by the preprocessor, which is that part of the compiler which handles lines which begin
with a pound sign (#). The source for the error is on such a line. A legal name is a string whose first character is
an alphabetic (a letter of the alphabet or an underscore). The succeeding characters may be any combination of
alphanumeric characters (alphabetics and numerals). The following symbols will produce this error code.

 2nd_time,
 dont_do_this!

49: multiply defined symbol

This message warns that a symbol has already been declared and that it is illegal to redeclare it. The following is
a representative example:

 Int I, j, k, l;

50: missing bracket

This error code is used to indicate the need for a parenthesis, bracket or brace in a variety of circumstances.

51: lvalue required

Only lvalues are allowed to stand on the left-hand side of an assignment. For example:

 Int num;

 Num = 7;

 W65C816S C Compiler/Optimizer

55

They are distinguished from rvalues, which can never stand on the left of an assignment, by the fact that they
refer to a unique location in memory where a value can be stored. An lvalue may be thought of as a bucket into
which an rvalue can be dropped. Just as the contents of one bucket can be passed to another, so can an lvalue,
y, be assigned to another lvalue, x:

 #define NUMBER 512

 x = y;
 1024 = z; // wrong, rvalues are reversed
 NUMBER = x; // wrong, NUMBER is an rvalue

Some operators which require lvalues as operands are increment (++), decrement (--), and address-of (&). It is
not possible to take the address of a register variable as was attempted in the following example:

 register int i, j;

 i = 3;
 j = &i;

52: obsolete

53: multiply defined label

On occasions when the goto statement is used, it is important that the specified label be unique. There is no
criterion by which the computer can choose between identical labels. If you have trouble finding the duplicate
label, use your text editor to search for all occurrences of the string.

54: obsolete

55: missing quote

The compiler found a mismatched double quote (“) in a #define preprocessor command. Unlike brackets, quotes
are not paired innermost to outermost, but sequentially. So the first quote is associated with the second, the third
with the fourth, and so on. Single quotes (‘) and double quotes (“) are entirely different characters and should not
be confused. The latter are used to delimit string constants. A double quote can be included in a string by use of a
backslash, as in this example:

 “this is a string”
 “this is a string with an embedded quote: \”. “

56: missing apostrophe

The compiler found a mismatched single quote or apostrophe (‘) in a #define preprocessor command. Single
quotes are paired sequentially (see error 55). Although quotes can not be nested, a quote can be represented in
a character constant with a backslash:

 char c = ‘\’’’; // c is initialized to a single quote

57: obsolete

58: invalid # encountered

The pound sign (#) begins each command for the preprocessor: #include, #define, #if, #ifdef, #ifndef, #else,
#endif, #asm, #endasm, #line and #undef. These symbols are strictly defined.

 W65C816S C Compiler/Optimizer

56

59: macro too long

Macros can be defined with a preprocessor command of the following form:

 #define [identifier] [substitution text]

The compiler then proceeds to replace all instances of identifier with the substitution text that was specified by the
#define.

This error code refers to the substitution text of a macro. Whereas ideally a macro definition may be extended for
an arbitrary number of lines by ending each line with a backslash (\), for practical purposes the size of a macro
has been limited to 255 characters.

60: loss of const/volatile info

This error occurs when passing the address of a variable that is declared as const and/or volatile.

 extern const volatile int clock_time;

 set_time(&clock_time); // error 60

61: reference to undefined structures

This message comes in two forms:

1) As a warning, due to referencing an undefined structure member.
2) As an error, when trying to obtain the size of an undefined structure.

a = sizeof(struct nodef); // error 61 if nodef not defined

62: function body must be compound statement

The body of a function must be enclosed by braces, even though it may consist of only one statement:

 function()
 {
 return 1;
 }

This error can be caused by an error inside a function declaration list, as in:

 func(a, b)
 int a; chr b;
 {
 …
 }
63: undefined label

A goto statement is meaningless if the corresponding label does not appear somewhere in the code. The
compiler disallows this since it must be able to specify a destination to the computer.

It is not possible to go to a label outside the present function (labels are local to the function in which they
appear). Thus, if a label does not exist in the same procedure as its corresponding goto, this message will be
generated.

 W65C816S C Compiler/Optimizer

57

64: inappropriate arguments

When a function is declared (as opposed to defined), it is poor syntax to specify an argument list:

 function(string)
 char *string;
 {
 char *func1(); // correct
 double func2(x, y); // wrong;
 …
 }

In this example, function() is being defined, but func1() and func2() are being declared.

65: invalid function argument

This error occurs in a function definition that contains an argument that is not a valid identifier.

 sub(a, 2b) { // error 65 because identifiers can’t begin with a
 // numeric character
66: expected comma

In an argument list, arguments must be separated by commas.

67: invalid else

An else was found which is not associated with an if statement. Else is bound to the nearest if at its own level of
nesting. So if-else pairings are determined by their relative placement in the code and their grouping by braces.

 If (…) {
 …
 if (…) {
 …
 } else if (…)
 …
 } else {
 …
 }

The indentation of the source text should indicate the intended structure of the code. Note that the indentation of
the if and else-if means only that the programmer wanted both conditionals to be nested at the same level, in
particular one step down from the presiding if statement. But it is the placement of braces that determines this for
the compiler. The example above is correct, but probably does not conform to the expectations revealed by the
indentation of the else statement. As shown here, the else is paired with the first if, not the second.

68: bad statement syntax

The keywords used in declaring a variable, which specify storage class and data type, must not appear in an
executable statement. In particular, all local declarations must appear at the beginning of a block, that is, directly
following the left brace which delimits the body of a loop, conditional or function. Once the compiler has reached a
non-declaration, a keyword such as char or int must not lead a statement; compare the use of the casting
operator:

 W65C816S C Compiler/Optimizer

58

 func()
 {
 int i;
 char array[12];
 float k = 2.03;

 i = 0;
 int m; // error 68
 j = i + 5;
 i = (int)k; // correct
 if (i) {
 int i = 3;

 j = i;
 printf(“%d”, i);
 }
 printf(“%d%d\n”, i, j);
 }

69: missing semicolon

A semicolon is missing from the end of an executable statement. This error code is similar to error code 7. It will
remain undetected until the following line and is often spuriously caused by a previous error.

70: goto needs a label

Compare your use of goto with this example. This message says that you did not specify where you wanted to
goto with label:

 goto label;
 …
 label:
 …

It is not possible to goto just any identifier in the source code; labels are special because they are followed by a
colon.

71: statement syntax error in do-while

The body of a do-while may consist of one statement or several statements enclosed in braces. A while
conditional is required after the body of the loop. This is true even if the loop is infinite, as it is required by the
rules of syntax. After typing in a long body, do not forget the while conditional.

72: statement syntax error in for

This error occurs when the first of the two semicolons that separate the three expressions found in a for loop
condition are missing.

 for (i=0 i; i++) { // error 72 due to missing semicolon

 W65C816S C Compiler/Optimizer

59

73: statement syntax error in for body

This error occurs when the second of the two semicolons that separate the three expressions found in a for loop
condition is missing.

 for (i=0; i i++) { // error 73 due to missing semicolon

74: expression must be integer constant

This error occurs when a variable occurs instead of an integer constant in declaring the size of an array,
initializing an element in an enum list, or specifying a case constant for a switch.

75: missing colon on case

This should be straightforward. If the compiler accepts a case value, a colon should follow it. A semi-colon must
not be accidentally entered in its place.

76: obsolete

77: case outside of switch

The keyword, case, belongs to just one syntactic structure, the switch. If case appears outside the braces which
contain a switch statement, this error is generated. Remember that all keywords are reserved, so that they
cannot be used as variable names.

78: missing colon on default

This message indicates that a colon is missing after the keyword, default. Compare with error 75.

79: duplicate default

The compiler has found more than one default in a switch. switch will compare a variable to a given list of
values. But it is not always possible to anticipate the full range of values which the variable may take. Nor is it
feasible to specify a large number of cases in which the program is not particularly interested.

So C provides for a default case. The default will handle all those values not specified by a case statement. It is
analogous to the else companion to the conditional, if. Just as there is one else for every if, only one default case
is allowed in a switch statement. However, unlike the else statement, the position of a default is not crucial; a
default can appear anywhere in a list of cases.

80: default outside of switch

The keyword, default, is used just like case. It must appear with the brackets which delimit the switch statement.

81: break/continue error

break and continue are used to skip the remainder of a loop in order to exit or repeat the loop. break will also
end a switch statement. But when the keywords, break or continue, are used outside of these contexts, this
message results.

82: obsolete

 W65C816S C Compiler/Optimizer

60

83: too many nested includes

#includes can be nested, but this capacity is limited. The compiler will balk if required to descend more than ten
levels into a nest.

84: constant expression expected

This error occurs when an integer constant is missing, such as in initializing an element in an enum list,
specifying a case constant for a switch, or for a #if preprocessor directive.

85: not an argument

The compiler has found a name in the declaration list that was not in the argument list. Only the converse case is
valid, i.e., an argument can be passed and not subsequently declared.

86: null dimension in array

In certain cases, the compiler knows how to treat multidimensional arrays whose left-most dimensions are not
given in its declaration. Specifically, this is true for an extern declaration and an array initialization. The value of
any dimension which is not the left-most must be given.

 extern char array[][12]; // correct
 extern char badarray[5][]; // wrong

87: invalid character constant

Character constants may consist of one or two characters enclosed in single quotes, as ‘a’ or ‘ab’. There is no
analog to a null string, so ‘’ (two single quotes with no intervening white space) is not allowed. Recall that the
special backslash characters (\b, \n, \t, etc.) are singular, so that the following are valid: ‘\n’, ‘\na’, ‘a\n’. ‘aaa’ is
invalid.

88: not a structure

Occurs only under compilation without the –s option. A name used as a structure does not refer to a structure, but
to some other data type:

 int i;
 i.member = 3; // error 88
89: invalid use of register storage class

A globally defined variable cannot be specified as a register. Register variables are required to be local.

90: symbol redeclared

A function argument has been declared more than once.

91: invalid use of floating point type

Floating point numbers can be negated (unary minus), added, subtracted, multiplied, divided and compared; any
other operator will produce this error message.

 W65C816S C Compiler/Optimizer

61

92: invalid type conversion

This error code indicates that a data type conversion, implicit in the code, is not allowed, as in the following piece
of code:

 int i;
 float j;
 char *ptr;

 i = j + ptr;

The diagram shows how variables are converted to different types in the evaluation of expressions. Initially,
variables of type char and short become int, and float becomes double. Then all variables are promoted to the
highest type present in the expression. The result of the expression will have this type also. Thus, an expression
containing a float will evaluate to a double.

Types have the following hierarchy:

 double float
 long
 unsigned
 int, short, char

This error can also be caused by an attempt to return a structure, since the structure is being cast to the type of
the function, as in:

 int func()
 {
 struct tag sam;
 return sam;
 }

93: invalid expression type for switch

Only a char, int or unsigned variable can be switched. See the example for error 74.

94: invalid identifier in macro definition

This error occurs in a macro definition that contains one or more arguments that are not valid identifiers.

 #define add(a, 2b) (a+2b) // error 94 because identifiers can’t
 // begin with a numeric character
95: obsolete

96: missing argument to macro

Not enough arguments were found in an invocation of a macro. Specifically, a “double comma” will produce this
error.

 #define reverse(x, y, z) (z, y, x)

 func(reverse(i, , k));

 W65C816S C Compiler/Optimizer

62

97: too many arguments in macro definition

This error occurs in a macro definition that contains more than 32 arguments in its definition.

98: not enough args in macro reference

The incorrect number of arguments was found in an invocation of a previously defined macro. As the examples
show, this error is not identical to error 96.

 #define exchange(x, y) (y, x)

 func(exchange(i)); // error 98

99: internal error

100: internal error

101: missing close parenthesis on macro reference

A right (closing) parenthesis is expected in a macro reference with arguments. In a sense, this is the complement
of error 95; a macro argument list is checked for both a beginning and an ending.

102: macro arguments too long

The combined length of a macro’s argument is limited. This error can be resolved by simply shortening the
arguments with which the macro is invoked.

103: #else with no #if

Correspondence between #if and #else is analogous to that which exists between the control flow statements, if
and else. Obviously, much depends upon the relative placement of the statements in the code. However, #if
blocks must always be terminated by #endif, and the #else statement must be included in the block of the #if
with which it is associated. For example:

 #if ERROR 0
 printf(“there was an error\n”);
 #else
 printf(“no error this time\n”);
 #endif

#if statements can be nested, as below. The range of each #if is determined by a #endif. This also excludes
#else from #if blocks to which it does not belong:

 #ifdef JAN1
 printf(“happy new year!\n”);
 #if sick
 printf(“I think I’ll go home now\n”);
 #else
 printf(“I think I’ll have another\n”);
 #endif
 #else
 printf(“I wonder what day it is\n”);
 #endif
If the first #endif was missing, error 103 would result. And without the second #endif, the compiler would
generate error
 107.

 W65C816S C Compiler/Optimizer

63

104: #endif with no #if

#endif is paired with the nearest #if, #ifdef or #ifndef which precedes it. (See error 103.)

105: #endasm with no #asm

#endasm must appear after an associated #asm. These compiler-control lines are used to begin and end
embedded assembly code. This error code indicates that the compiler has reached a #endasm without having
found a previous #asm. If the #asm was simply missing, the error list should begin with the assembly code (which
are undefined symbols to the compiler).

106: #asm within #asm block

There is no meaningful sense in which in-line assembly code can be nested, so the #asm keyword must not
appear between a paired #asm/#endasm. When a piece of in-line assembly is augmented for temporary
purposes, the old #asm and #endasm can be enclosed in comments as place-holders.
 #asm
 // temporary asm code
 // #asm old beginning
 // more asm code
 #endasm

107: missing #endif

A #endif is required for every #if, #ifdef and #ifndef, even if the entire source file is subject to a single conditional
compilation. Try to assign pairs beginning with the first #endif. Backtrack to the previous #if and form the pair.
Assign the next #endif with the nearest unpaired #if. When this process becomes greatly complicated, you might
consider rethinking the logic of your program.

108: missing #endasm

In-line assembly code must be terminated by a #endasm in all cases. #asm must always be paired with a
#endasm.

109: obsolete

110: invalid use of : operator

The colon operator occurs in two places:

1) following a question mark as part of a conditional, as in (flag ? 1 : 0).
2) Following a label inserted by the programmer or following one of the reserved labels, case and

default.

111: invalid use of a void expression

This error can be caused by assigning a void expression to a variable, as in this example:

 void func();
 int h;

 h = func();

 W65C816S C Compiler/Optimizer

64

112: obsolete

113: duplicate case in switch

A switch statement has two case values which are the same. Either the two cases must be combined into one,
or one must be discarded. For instance:

 switch(c) {
 case NOOP:
 return 0;
 case MULT:
 return x * y;
 case DIV:
 return x / y;
 case NOOP:
 default:
 return 1;
 }

The case of NOOP is duplicated and will generate an error.

114: macro redefined

For example,

 #define islow(n) (n >= 0 && n < 5)
 …
 #define islow(n) (n >= 0 && n <= 5)

The macro, islow, is being used to classify a numerical value. When a second definition of it is found, the
compiler will compare the new substitution string with the previous one. If they are found to be different, the
second definition will become current, and this error code will be produced.

If the example, the second definition differs from the first in a single character, ‘=’. The second definition is also
different from this one:

 #define islow(n) n > 0 && n <= 5

since the parentheses are missing.

The following lines will not generate this error:

 #define NULL 0
 …
 #define NULL 0

But these are different from:

 #define NULL ‘\0’

In practice, this error message does not affect the compilation of the source code. The most recent “revision” of
the substitution string is used for the macro. But relying upon this fact may not be a wise habit.

 W65C816S C Compiler/Optimizer

65

115: keyword redefined

Keywords cannot be defined as macros, as in:

 #define int foo

If you have a variable which may be either, for instance, a short or a long integer, there are alternative methods
for switching between the two. If you want to compile the variable as either type of integer, consider the following:

 #ifdef LONGING
 long i;
 #else
 short i;
 #endif

Another possibility is through a typedef:

 #ifdef LONGINT
 typedef long VARTYPE;
 #else
 typedef short VARTYPE;
 #endif
 VARTYPE i;
116: field width must be > 0

A field in a bit field structure can not have a negative number of bits.

117: invalid 0 length field

A field in a bit field structure can not have zero bits.

118: field is too wide

A field in a bit field structure can not have more than 16 bits.

119: field not allowed here

A bit field definition can only be contained in a structure.

120: invalid type for field

The type of a bit field can only be of type int or unsigned int.

121: ptr/int conversion

The compiler issues this warning message if it must implicitly convert the type of an expression from pointer to int
or long, or vice versa.

If the program explicitly casts a pointer to an int, this message will not be issued. However, in this case, error 122
may occur.

 W65C816S C Compiler/Optimizer

66

For example, the following will generate warning 121:

 char *cp;
 int i;

 …
 i = cp; // implicit conversion of char to int

When the compiler issues warning 121, it will generate correct code if the sizes of the two items are the same.

122: ptr & int not same size

If a program explicitly casts a pointer to an int, and the sizes of the two items differ, the compiler will issue this
warning message. The code that is generated when the converted pointer is used in an expression will use only
as much of the least significant part of the pointer as will fit in an int.

123: far/huge ptr & ptr not same size

This error occurs when trying to assign a near pointer to a far or huge pointer. A warning is generated when
casting a far or huge pointer to a near pointer.

124: invalid ptr/ptr expression

If a program attempts to assign one pointer to another without explicitly casting the two pointers to be of the same
type, and the types of the two pointers are in fact different, the compiler will issue this warning message.

The compiler will generate code for the assignment, and if the sizes of the two pointers are the same, the code
will be correct. But if the sizes differ, the code may not be correct.

125: too many subscripts or indirection on integer

This warning message is issued if a program attempts to use an integer as a pointer; that is, as the operand of a
star operator.

If the sizes of a pointer and an int are the same, the generated code will access the correct memory location, but
if they are not, it will not.

For example:

 char c;
 long g;

 *0x5c = 0; // warning 125, because 0x5c is an int
 c[i] = 0; // warning 125, because c+i is an int
 g[i] = 0; // error 12, because g+i is a long

126: too many arguments

This error occurs when a function is invoked with more arguments than is specified in its prototype or definition.
The only exception allowed is when a variable number of arguments is specified in the prototype.

 W65C816S C Compiler/Optimizer

67

127: too few arguments

This error occurs when a function is invoked with less arguments than is specified in its prototype or definition.

128: #error

This error was generated by the #error directive and is followed by the optional sequence of preprocessing
tokens found in the source code.

129: #elif with no #if

This error occurs when the #elif preprocessor directive is used without a preceding #if directive.

130: obsolete

131: ## at the beginning/end of macro body

This error occurs when a ## is found as the first or last end of a macro definition body.

 #define TWOSHARP 2## // error 131
132: obsolete

133: # not followed by a parameter

This error may occur in a #define macro in which the # operator is applied to a parameter in the replacement list.
If the # token is not followed by a parameter, this error message will be generated.

134: obsolete

135: attempt to undefined a predefined macro

This error occurs when attempting to use a #undef on those macros that are predefined by the compiler, such as
__STDC__, __TIME__, __DATE__, __FILE__, __LINE__, and __FUNC__.

 #undef __TIME__ // error 135

136: invalid #include directive

This error occurs when the #include directive is not followed by a string literal or a filename enclosed in < >
signs.

 #include filename // error 136

137: obsolete

138: missing right paren

This error occurs when attempting to use the defined directive with a left parenthesis and no matching right
parenthesis.

 #if defined(FOOBAR // error 138

 W65C816S C Compiler/Optimizer

68

139: missing identifier

This error occurs when attempting to use the defined directive with no identifier following the defined keyword.

 #if defined // error 139
140: obsolete

141: obsolete

142: range-modifier ignored

Using a range modifier (near, far, etc.) on a structure or union member is allowed by the parser but has no effect
and is ignored.

143: range-modifier syntax error

A range-modifier is illegal as part of a function declaration. You cannot say that a function is near, far, huge, etc.

144: invalid operand for sizeof

This error occurs when attempting to obtain the sizeof of something other than a previously defined data
structure.

 Sub() {
 Int I = sizeof(sub); // error 144
 }

145: function called without prototype

This warning is generated for functions that are called without having been prototyped. It only occurs when
compiling with the –wp option.

146: constant value too large

This error occurs when attempting to use a constant larger than the unsigned long 0xffffffff in an expression.

147: invalid hexadecimal constant

This error occurs when the character following a 0x or 0X is not a valid hexadecimal constant.

 int i = 0xg1; // error 147, ‘g’ is not a valid hex constant

148: invalid floating constant

This error occurs if the first letter excluding the optional sign following the e or E in a floating point number is
something other than a digit.

 double d = 123e+f; // error 148, ‘f’ is not a digit

149: invalid character on control line

This error occurs on conditional preprocessor lines that expect a single constant expression but get extra
information.

 #if CONST invalid // error 149 due to extra characters “invalid”

 W65C816S C Compiler/Optimizer

69

150: unterminated comment

This error occurs if the start of a comment (/*) is not terminated with (*/) before the end of the file.

151: no block level extern initialization

This error occurs when initialization of an extern variable is attempted inside a function. Initialization of externs is
permissible outside of functions, or the function can declare the variable as extern and then initialize it further
down in the code using an assignment statement.

152: missing identifier in parameter list

This error occurs when the type of an argument is specified in a function definition without being followed by the
argument itself.

 sub(int) { // error 152, missing the name of the int arg

153: missing static function definition

This error occurs if a function has been declared as static in a file and has not been followed by its actual
definition further down in the file.

154: function definition can’t be via typedef

This error occurs when incorrectly defining a function using a typedef. It is possible to define a typedef that is a
function such as:

 typedef int F(void);

which sets the type F to be a function with no arguments returning int. Then, a function can be declared such as:

 F f;

which is legal. However, the function definition:

 F f ()

is illegal.

155: file must contain external definition

This error occurs in a file with no external data or function definitions when compiling with the –pa option to use
the ANSI preprocessor.

156: wide string literal not allowed here

This error occurs when attempting to use a wide string literal with the #include or #line directives.

 #include L”filename” // error 156

157: incompatible function declarations

This error occurs if a function declaration does not match a previous definition or declaration for the same
function.

 W65C816S C Compiler/Optimizer

70

158: called function may not return incomplete type

This error occurs when a function attempts to return a structure which has not been defined. If a functions is
called that returns a structure, but the size of the structure is unknown, then it is not possible for the compiler to
know how much data is being returned by the function and how much space to reserve for the return value.

For example:

 Struct foo x();

 Main()
 {
 x();
 }
159: syntax error in #pragma

This error occurs if the #pragma is used for a function call and does not match the following syntax.

 #pragma regcall([return=] func(arg1, arg2, …, argn)]
 #pragma amicall(base, offset, func(arg1, arg2, …, argn))
 #pragma libcall func base offset regmask
 #pragma syscall func offset regmask

160: auto variable not used in function

This warning occurs when compiling with the –wu option and a function containing a local variable has not been
used.

161: function defined without prototype

This warning occurs when compiling with the –wp option and a function does not have its arguments prototyped
or if there are no arguments but you have not specified void.

162: can’t take address of register class

This error occurs when attempting to take the address of a variable that has been declared as a register class
variable.

 register int a;
 int *ip;

 ip = &a; // error 162

163: upper bits of hex character constant ignored

This warning occurs if the compiler encounters a hexadecimal character constant (specified by \x) whose value
cannot fit within a single byte. For example:

 char *cptr = “\x9b7”;

Will generate a warning because “\x9b7” cannot be stored within one byte. The compiler will ignore the most
significant bits, and use the least significant bits. In the example the compiler will treat “\x9b7” as “\xb7”. This
warning will occur if you accidentally place a digit from 0 through 9 or a letter from a through f immediately after a
\x escape sequence. In the example if you intended to have 0x9b followed by the ASCII digit 7, you could use
string concatenation to produce the desired result:

 char *cptr = “\x9b” “7”;

 W65C816S C Compiler/Optimizer

71

164: non-void type function must have return value

This error message can occur only if the –wr compiler option is used. If the compiler encounters a function which
is defined as returning a value (int, char, or the like) but which does not have an explicit return. For example:

 int func()
 {
 printf(“hello\n”);
 }
would generate this message. Replacing int func() with func() will not correct the error. The specification void
func() will correct the problem. The specification of an explicit return will also.

165: item not previously declared found in prototype

This warning message will be generated if a struct appears as an argument in a function prototype and there is
no previous declaration for the struct. This warning will be generated if there is no struct declaration or if the
struct declaration occurs after the prototype statement. The sequence struct declaration, prototype statement,
function definition will correct the problem as in this example:

 struct astruct {
 int a;
 char c;
 }

 void func(struct astruct arg);

 void func(struct astruct arg)
 {
 …
 }

This problem presents special difficulties when it arises because the intended struct declaration occurs after the
prototype definition. A strict interpretation of ANSI rules, in this case, produces results that may seem arbitrary
and illogical. Positioning the struct declaration so that it occurs before the prototype definition corrects the
problem. If the problem is not corrected, it is unlikely that the program will run correctly.

166: enum must be declared outside prototype

This problem is similar to error 165 but pertains to the enum datatype.

167: can’t take address of stack in this memory model

This error occurs when an attempt is made to take the address of a stack item.

168: missing semicolon in asm block

When the asm keyword is used to declare a block of assembly language statements, each must be terminated
with a semicolon.

169: can’t convert far pointer to near

A far pointer cannot be converted to a near pointer because of the difference in the size of the pointers.

 W65C816S C Compiler/Optimizer

72

170: can't use TSB/TRB on volatile value

This warning message is generated to alert the developer of the inability to use TSB/TRB on volatile values.

 W65C816S C Compiler/Optimizer

73

APPENDIX C Limits for Mathematical Variables

Type Length Range
UCHAR 8 bits 0 to 255
CHAR 8 bits -127 to 127
enum 16 bits -32,767 to 32,767
short 16 bits -32,767 to 32,767
unsigned short 16 bits 0 to 65,535
int 16 bits -32,767 to 32,767
unsigned int 16 bits 0 to 65,535
long 32 bits -2,147,483,647 to 2,147,483,647
unsigned long 32 bits 0 to 4,294,967,295
float 32 bits 3.4e-38 to 3.4e+38
double 64 bits 2.2e-308 to 1.79e+308
long double 80 bits 3.4e-4932 to 1.1e+4932

near pointer 8 bits
Far pointer 24 bits

TINY_VAL (2.2e-308)
HUGE_VAL 1.797693134862316E+308

LOGTINY (-708.396)
LOGHUGE (709.778)

 W65C816S C Compiler/Optimizer

74

APPENDIX D File Include Definitions

File Name Definition
ASSERT.H defines assert debugging functions
CTYPE.H declares character handling functions
ERRNO.H defines macro names for error numbers functions
FCNTL.H defines macros used with open function
FLOAT.H defines limits for floating point values
LIMITS.H defines limits for character and integer values
LOCALE.H declares setlocale function
MATH.H declares math functions
SETJMP.H declares setjmp and longjmp functions
SIGNAL.H declares signal handling functions
STDARG.H defines variable argument macros
STDDEF.H defines standard types and macros
STDIO.H declares standard input and output functions
STDLIB.H declares general utility functions
STRING.H declares string handling functions
TIME.H declares time and date functions

 W65C816S C Compiler/Optimizer

75

INDEX

#asm, 38
#endasm, 38
#include, 11

#include Search Order, 11
#pragma section, 30, 33, 34, 35
A option, 12
-A, option, 10
ANSI, 9, 44

ANSI FUNCTIONS, 43
ARGUMENT PASSING, 27
asm, 39
ASM Keyword, 39
asmend, 38
asmstart, 38
Assembling Compiler Output Considerations, 41
assembly language output, 16, 17, 23, 35, 39
-AT, 10, 15
bit fields, 20
C++, 12
Caveats, 33
chars, 39
code, 9
data, 12

initialized, 12
uninitialized, 12

enums, 20
CCOPT816, 11
CCTEMP, 10

FLOATING POINT, 39
function prototypes, 43
HEAP FUNCTIONS, 44
-I, 15
I/O, 36
IEEE, 39
include, 11

search, 11
index registers, 22

INPUT FILE, 9
Input/Output Port Addressing, 36
KDATA, 19, 20, 29, 35, 36
Large Programs, 33
Libraries, 43
library functions, 43
linking, 12
loops, 22
macro, 22
MEMORY MANAGEMENT, 29
MEMORY MODELS

Compact Memory Model, 29
Identifier Name Prefixes, 29
Large Memory Model, 29
Medium Memory Model, 29
Small Memory Model, 28

modules, 13
-O, 15
–O, 10
object file, 9
optimization, 22
Option Descriptions, 16
Option Philosophy, 11
Output Files, 10
PRAGMAS, 35

Section Pragma, 35
pre-compiled header file, 17
Referencing I/O, 36
ROM, 12
-SM, 16
source level debugging, 22
startup file, 13, 28
STRINGS, 35
Trigraphs, 21
Volatile Qualifiers, 41
warnings, 16

	 CHAPTER 1 INTRODUCTION
	Compiler Operation
	Input File Example:
	Output Files Example:
	Creating an Object File
	Creating an Assembly Language File

	Searching for #Include Files
	Compiler Options
	Compiler Option Philosophy
	CCOPT816 Environment Variable

	C Programs in ROM
	C Program Organization
	System Organization
	Creating A ROM Program

	CHAPTER 2 WDC816CC
	Running the Program
	Option Summary
	Option Descriptions

	CHAPTER 3 Technical Notes
	Path Size Limitation
	Function Calls and Argument Passing
	Function Arguments
	Stack Frame and Local Variables

	Startup Code
	Memory Models
	Small Memory Model
	Compact Memory Model
	Medium Memory Model
	Large Memory Model
	Identifier Name Prefixes

	Memory Management
	Caveats
	Floating Point Considerations

	Pragmas
	Section Pragma

	Consts and Strings
	Input/Output Port Addressing
	In-Line Assembly Code
	ASM Keyword
	Producing Optimum Code
	Optimizer
	Floating Point
	Interrupt Routines
	Prototyping Functions
	Variable Name Length
	Debugging
	Assembling Compiler Output Considerations
	Volatile Qualifiers
	Negative Array Indexes
	Global Variable and Function Declarations

	CHAPTER 4 Libraries
	Library Names (WDC_SDS\LIBSRC)
	ANSI Functions
	Heap Functions
	Making ‘C’ Callable Assembly Language Functions

	APPENDIX A WDC Supported C Functions
	APPENDIX B Description of Compiler Error Messages
	1: bad digit in octal constant
	2: obsolete
	3: unterminated string
	4: argument type mismatch
	5: invalid type for function
	6: inappropriate arguments
	7: bad declaration syntax
	8: syntax error in typecast
	9: invalid operand of & (address of)
	10: array size must be positive integer
	11: obsolete
	12: invalid pointer reference
	13: obsolete
	14: obsolete
	15: storage class conflict
	16: data type conflict
	17: internal
	18: data type conflict
	19: bad syntax
	20: structure redeclaration
	21: missing }
	22: syntax error in structure declaration
	23: syntax error in enum declaration
	24: need right parenthesis or comma in arg list
	25: structure member name expected here
	26: must be structure/union member
	27: invalid typecast
	28: incompatible structures
	29: invalid use of structure
	30: missing : in ? conditional expression
	31: call of non-function
	32: invalid pointer calculation
	33: invalid type
	34: undefined symbol
	35: typedef not allowed here
	36: obsolete
	37: invalid or missing expression
	38: obsolete
	39: enum redeclaration
	40: internal error
	41: initializer not a constant
	42: too many initializers
	43: initialization of undefined structure
	44: missing right paren in declaration
	45: bad declaration syntax
	46: missing closing brace
	47: open failure on include file
	48: invalid symbol name
	49: multiply defined symbol
	50: missing bracket
	51: lvalue required
	52: obsolete
	53: multiply defined label
	54: obsolete
	55: missing quote
	56: missing apostrophe
	57: obsolete
	58: invalid # encountered
	59: macro too long
	60: loss of const/volatile info
	61: reference to undefined structures
	62: function body must be compound statement
	63: undefined label
	64: inappropriate arguments
	65: invalid function argument
	66: expected comma
	67: invalid else
	68: bad statement syntax
	69: missing semicolon
	70: goto needs a label
	71: statement syntax error in do-while
	72: statement syntax error in for
	73: statement syntax error in for body
	74: expression must be integer constant
	75: missing colon on case
	76: obsolete
	77: case outside of switch
	78: missing colon on default
	79: duplicate default
	80: default outside of switch
	81: break/continue error
	82: obsolete
	83: too many nested includes
	84: constant expression expected
	85: not an argument
	86: null dimension in array
	87: invalid character constant
	88: not a structure
	89: invalid use of register storage class
	90: symbol redeclared
	91: invalid use of floating point type
	92: invalid type conversion
	93: invalid expression type for switch
	94: invalid identifier in macro definition
	95: obsolete
	96: missing argument to macro
	97: too many arguments in macro definition
	98: not enough args in macro reference
	99: internal error
	100: internal error
	101: missing close parenthesis on macro reference
	102: macro arguments too long
	103: #else with no #if
	104: #endif with no #if
	105: #endasm with no #asm
	106: #asm within #asm block
	107: missing #endif
	108: missing #endasm
	109: obsolete
	110: invalid use of : operator
	111: invalid use of a void expression
	112: obsolete
	113: duplicate case in switch
	114: macro redefined
	115: keyword redefined
	116: field width must be > 0
	117: invalid 0 length field
	118: field is too wide
	119: field not allowed here
	120: invalid type for field
	121: ptr/int conversion
	122: ptr & int not same size
	123: far/huge ptr & ptr not same size
	124: invalid ptr/ptr expression
	125: too many subscripts or indirection on integer
	126: too many arguments
	127: too few arguments
	128: #error
	129: #elif with no #if
	130: obsolete
	131: ## at the beginning/end of macro body
	132: obsolete
	133: # not followed by a parameter
	134: obsolete
	135: attempt to undefined a predefined macro
	136: invalid #include directive
	137: obsolete
	138: missing right paren
	139: missing identifier
	140: obsolete
	141: obsolete
	142: range-modifier ignored
	143: range-modifier syntax error
	144: invalid operand for sizeof
	145: function called without prototype
	146: constant value too large
	147: invalid hexadecimal constant
	148: invalid floating constant
	149: invalid character on control line
	150: unterminated comment
	151: no block level extern initialization
	152: missing identifier in parameter list
	153: missing static function definition
	154: function definition can’t be via typedef
	155: file must contain external definition
	156: wide string literal not allowed here
	157: incompatible function declarations
	158: called function may not return incomplete type
	159: syntax error in #pragma
	160: auto variable not used in function
	161: function defined without prototype
	162: can’t take address of register class
	163: upper bits of hex character constant ignored
	164: non-void type function must have return value
	165: item not previously declared found in prototype
	166: enum must be declared outside prototype
	167: can’t take address of stack in this memory model
	168: missing semicolon in asm block
	169: can’t convert far pointer to near
	170: can't use TSB/TRB on volatile value

	APPENDIX C Limits for Mathematical Variables
	APPENDIX D File Include Definitions
	INDEX

